Identifier
-
Mp00251:
Graphs
—clique sizes⟶
Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St001462: Standard tableaux ⟶ ℤ
Values
([],1) => [1] => [[1]] => [[1]] => 1
([],2) => [1,1] => [[1],[2]] => [[1,2]] => 2
([(0,1)],2) => [2] => [[1,2]] => [[1],[2]] => 1
([],3) => [1,1,1] => [[1],[2],[3]] => [[1,2,3]] => 3
([(1,2)],3) => [2,1] => [[1,2],[3]] => [[1,3],[2]] => 2
([(0,2),(1,2)],3) => [2,2] => [[1,2],[3,4]] => [[1,3],[2,4]] => 2
([(0,1),(0,2),(1,2)],3) => [3] => [[1,2,3]] => [[1],[2],[3]] => 1
([],4) => [1,1,1,1] => [[1],[2],[3],[4]] => [[1,2,3,4]] => 4
([(2,3)],4) => [2,1,1] => [[1,2],[3],[4]] => [[1,3,4],[2]] => 3
([(1,3),(2,3)],4) => [2,2,1] => [[1,2],[3,4],[5]] => [[1,3,5],[2,4]] => 3
([(0,3),(1,3),(2,3)],4) => [2,2,2] => [[1,2],[3,4],[5,6]] => [[1,3,5],[2,4,6]] => 3
([(0,3),(1,2)],4) => [2,2] => [[1,2],[3,4]] => [[1,3],[2,4]] => 2
([(0,3),(1,2),(2,3)],4) => [2,2,2] => [[1,2],[3,4],[5,6]] => [[1,3,5],[2,4,6]] => 3
([(1,2),(1,3),(2,3)],4) => [3,1] => [[1,2,3],[4]] => [[1,4],[2],[3]] => 2
([(0,3),(1,2),(1,3),(2,3)],4) => [3,2] => [[1,2,3],[4,5]] => [[1,4],[2,5],[3]] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [[1,3,5,7],[2,4,6,8]] => 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,3] => [[1,2,3],[4,5,6]] => [[1,4],[2,5],[3,6]] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [[1,2,3,4]] => [[1],[2],[3],[4]] => 1
([],5) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [[1,2,3,4,5]] => 5
([(3,4)],5) => [2,1,1,1] => [[1,2],[3],[4],[5]] => [[1,3,4,5],[2]] => 4
([(2,4),(3,4)],5) => [2,2,1,1] => [[1,2],[3,4],[5],[6]] => [[1,3,5,6],[2,4]] => 4
([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [[1,3,5,7],[2,4,6]] => 4
([(0,4),(1,4),(2,4),(3,4)],5) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [[1,3,5,7],[2,4,6,8]] => 4
([(1,4),(2,3)],5) => [2,2,1] => [[1,2],[3,4],[5]] => [[1,3,5],[2,4]] => 3
([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [[1,3,5,7],[2,4,6]] => 4
([(0,1),(2,4),(3,4)],5) => [2,2,2] => [[1,2],[3,4],[5,6]] => [[1,3,5],[2,4,6]] => 3
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [[1,2,3],[4],[5]] => [[1,4,5],[2],[3]] => 3
([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [[1,3,5,7],[2,4,6,8]] => 4
([(1,4),(2,3),(2,4),(3,4)],5) => [3,2,1] => [[1,2,3],[4,5],[6]] => [[1,4,6],[2,5],[3]] => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,2,2] => [[1,2,3],[4,5],[6,7]] => [[1,4,6],[2,5,7],[3]] => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,1] => [[1,2,3],[4,5,6],[7]] => [[1,4,7],[2,5],[3,6]] => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,2,2] => [[1,2,3],[4,5],[6,7]] => [[1,4,6],[2,5,7],[3]] => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [[1,4,7],[2,5,8],[3,6]] => 3
([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [[1,3,5,7],[2,4,6,8]] => 4
([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [[1,2,3],[4,5]] => [[1,4],[2,5],[3]] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,2,2] => [[1,2,3],[4,5],[6,7]] => [[1,4,6],[2,5,7],[3]] => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [[1,2,3],[4,5,6]] => [[1,4],[2,5],[3,6]] => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [[1,4,7],[2,5,8],[3,6]] => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [[1,2,3,4],[5]] => [[1,5],[2],[3],[4]] => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,2] => [[1,2,3,4],[5,6]] => [[1,5],[2,6],[3],[4]] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,3] => [[1,2,3,4],[5,6,7]] => [[1,5],[2,6],[3,7],[4]] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,4] => [[1,2,3,4],[5,6,7,8]] => [[1,5],[2,6],[3,7],[4,8]] => 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [[1,2,3,4,5]] => [[1],[2],[3],[4],[5]] => 1
([],6) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [[1,2,3,4,5,6]] => 6
([(4,5)],6) => [2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => [[1,3,4,5,6],[2]] => 5
([(3,5),(4,5)],6) => [2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => [[1,3,5,6,7],[2,4]] => 5
([(2,5),(3,5),(4,5)],6) => [2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => [[1,3,5,7,8],[2,4,6]] => 5
([(2,5),(3,4)],6) => [2,2,1,1] => [[1,2],[3,4],[5],[6]] => [[1,3,5,6],[2,4]] => 4
([(2,5),(3,4),(4,5)],6) => [2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => [[1,3,5,7,8],[2,4,6]] => 5
([(1,2),(3,5),(4,5)],6) => [2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [[1,3,5,7],[2,4,6]] => 4
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => [[1,4,5,6],[2],[3]] => 4
([(0,1),(2,5),(3,5),(4,5)],6) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [[1,3,5,7],[2,4,6,8]] => 4
([(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => [[1,4,6,7],[2,5],[3]] => 4
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => [[1,4,6,8],[2,5,7],[3]] => 4
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [[1,3,5,7],[2,4,6,8]] => 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => [[1,4,7,8],[2,5],[3,6]] => 4
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => [[1,4,6,8],[2,5,7],[3]] => 4
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [[1,3,5],[2,4,6]] => 3
([(0,1),(2,5),(3,4),(4,5)],6) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [[1,3,5,7],[2,4,6,8]] => 4
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [[1,2,3],[4,5],[6]] => [[1,4,6],[2,5],[3]] => 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => [[1,4,6,8],[2,5,7],[3]] => 4
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2] => [[1,2,3],[4,5],[6,7]] => [[1,4,6],[2,5,7],[3]] => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [[1,2,3],[4,5,6],[7]] => [[1,4,7],[2,5],[3,6]] => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [[1,4,7],[2,5,8],[3,6]] => 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,2,2] => [[1,2,3],[4,5],[6,7]] => [[1,4,6],[2,5,7],[3]] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [[1,4,7],[2,5,8],[3,6]] => 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [[1,4,7],[2,5,8],[3,6]] => 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => [[1,5,6],[2],[3],[4]] => 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,1] => [[1,2,3,4],[5,6],[7]] => [[1,5,7],[2,6],[3],[4]] => 3
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,2] => [[1,2,3,4],[5,6],[7,8]] => [[1,5,7],[2,6,8],[3],[4]] => 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3,1] => [[1,2,3,4],[5,6,7],[8]] => [[1,5,8],[2,6],[3,7],[4]] => 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,2] => [[1,2,3,4],[5,6],[7,8]] => [[1,5,7],[2,6,8],[3],[4]] => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [[1,2,3],[4,5,6]] => [[1,4],[2,5],[3,6]] => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [[1,4,7],[2,5,8],[3,6]] => 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [[1,2,3,4],[5,6]] => [[1,5],[2,6],[3],[4]] => 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2,2] => [[1,2,3,4],[5,6],[7,8]] => [[1,5,7],[2,6,8],[3],[4]] => 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,3] => [[1,2,3,4],[5,6,7]] => [[1,5],[2,6],[3,7],[4]] => 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,4] => [[1,2,3,4],[5,6,7,8]] => [[1,5],[2,6],[3,7],[4,8]] => 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [[1,2,3,4,5],[6]] => [[1,6],[2],[3],[4],[5]] => 2
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,2] => [[1,2,3,4,5],[6,7]] => [[1,6],[2,7],[3],[4],[5]] => 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => [[1,2,3,4,5],[6,7,8]] => [[1,6],[2,7],[3,8],[4],[5]] => 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => [[1,2,3,4,5,6]] => [[1],[2],[3],[4],[5],[6]] => 1
([],7) => [1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [[1,2,3,4,5,6,7]] => 7
([(5,6)],7) => [2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => [[1,3,4,5,6,7],[2]] => 6
([(4,6),(5,6)],7) => [2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => [[1,3,5,6,7,8],[2,4]] => 6
([(3,6),(4,5)],7) => [2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => [[1,3,5,6,7],[2,4]] => 5
([(2,3),(4,6),(5,6)],7) => [2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => [[1,3,5,7,8],[2,4,6]] => 5
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => [[1,4,5,6,7],[2],[3]] => 5
([(3,6),(4,5),(4,6),(5,6)],7) => [3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => [[1,4,6,7,8],[2,5],[3]] => 5
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [[1,3,5,7],[2,4,6]] => 4
([(0,3),(1,2),(4,6),(5,6)],7) => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [[1,3,5,7],[2,4,6,8]] => 4
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => [[1,4,6,7],[2,5],[3]] => 4
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => [[1,4,6,8],[2,5,7],[3]] => 4
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => [[1,4,7,8],[2,5],[3,6]] => 4
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => [[1,4,6,8],[2,5,7],[3]] => 4
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => [[1,5,6,7],[2],[3],[4]] => 4
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => [[1,5,7,8],[2,6],[3],[4]] => 4
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [[1,2,3],[4,5],[6,7]] => [[1,4,6],[2,5,7],[3]] => 3
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [[1,4,7],[2,5,8],[3,6]] => 3
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [[1,2,3],[4,5,6],[7]] => [[1,4,7],[2,5],[3,6]] => 3
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [[1,4,7],[2,5,8],[3,6]] => 3
>>> Load all 114 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of factors of a standard tableaux under concatenation.
The concatenation of two standard Young tableaux $T_1$ and $T_2$ is obtained by adding the largest entry of $T_1$ to each entry of $T_2$, and then appending the rows of the result to $T_1$, see [1, dfn 2.10].
This statistic returns the maximal number of standard tableaux such that their concatenation is the given tableau.
The concatenation of two standard Young tableaux $T_1$ and $T_2$ is obtained by adding the largest entry of $T_1$ to each entry of $T_2$, and then appending the rows of the result to $T_1$, see [1, dfn 2.10].
This statistic returns the maximal number of standard tableaux such that their concatenation is the given tableau.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers $1$ through $n$ row by row.
Map
clique sizes
Description
The integer partition of the sizes of the maximal cliques of a graph.
Map
conjugate
Description
Sends a standard tableau to its conjugate tableau.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!