edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0,1,0]=>0 [1,1,0,0]=>1 [1,0,1,0,1,0]=>0 [1,0,1,1,0,0]=>1 [1,1,0,0,1,0]=>1 [1,1,0,1,0,0]=>2 [1,1,1,0,0,0]=>2 [1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,1,0,0]=>1 [1,0,1,1,0,0,1,0]=>1 [1,0,1,1,0,1,0,0]=>2 [1,0,1,1,1,0,0,0]=>2 [1,1,0,0,1,0,1,0]=>1 [1,1,0,0,1,1,0,0]=>2 [1,1,0,1,0,0,1,0]=>2 [1,1,0,1,0,1,0,0]=>3 [1,1,0,1,1,0,0,0]=>3 [1,1,1,0,0,0,1,0]=>2 [1,1,1,0,0,1,0,0]=>3 [1,1,1,0,1,0,0,0]=>3 [1,1,1,1,0,0,0,0]=>3 [1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,1,0,0]=>1 [1,0,1,0,1,1,0,0,1,0]=>1 [1,0,1,0,1,1,0,1,0,0]=>2 [1,0,1,0,1,1,1,0,0,0]=>2 [1,0,1,1,0,0,1,0,1,0]=>1 [1,0,1,1,0,0,1,1,0,0]=>2 [1,0,1,1,0,1,0,0,1,0]=>2 [1,0,1,1,0,1,0,1,0,0]=>3 [1,0,1,1,0,1,1,0,0,0]=>3 [1,0,1,1,1,0,0,0,1,0]=>2 [1,0,1,1,1,0,0,1,0,0]=>3 [1,0,1,1,1,0,1,0,0,0]=>3 [1,0,1,1,1,1,0,0,0,0]=>3 [1,1,0,0,1,0,1,0,1,0]=>1 [1,1,0,0,1,0,1,1,0,0]=>2 [1,1,0,0,1,1,0,0,1,0]=>2 [1,1,0,0,1,1,0,1,0,0]=>3 [1,1,0,0,1,1,1,0,0,0]=>3 [1,1,0,1,0,0,1,0,1,0]=>2 [1,1,0,1,0,0,1,1,0,0]=>3 [1,1,0,1,0,1,0,0,1,0]=>3 [1,1,0,1,0,1,0,1,0,0]=>4 [1,1,0,1,0,1,1,0,0,0]=>4 [1,1,0,1,1,0,0,0,1,0]=>3 [1,1,0,1,1,0,0,1,0,0]=>4 [1,1,0,1,1,0,1,0,0,0]=>4 [1,1,0,1,1,1,0,0,0,0]=>4 [1,1,1,0,0,0,1,0,1,0]=>2 [1,1,1,0,0,0,1,1,0,0]=>3 [1,1,1,0,0,1,0,0,1,0]=>3 [1,1,1,0,0,1,0,1,0,0]=>4 [1,1,1,0,0,1,1,0,0,0]=>4 [1,1,1,0,1,0,0,0,1,0]=>3 [1,1,1,0,1,0,0,1,0,0]=>4 [1,1,1,0,1,0,1,0,0,0]=>4 [1,1,1,0,1,1,0,0,0,0]=>4 [1,1,1,1,0,0,0,0,1,0]=>3 [1,1,1,1,0,0,0,1,0,0]=>4 [1,1,1,1,0,0,1,0,0,0]=>4 [1,1,1,1,0,1,0,0,0,0]=>4 [1,1,1,1,1,0,0,0,0,0]=>4 [1,0,1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,0,1,1,0,0]=>1 [1,0,1,0,1,0,1,1,0,0,1,0]=>1 [1,0,1,0,1,0,1,1,0,1,0,0]=>2 [1,0,1,0,1,0,1,1,1,0,0,0]=>2 [1,0,1,0,1,1,0,0,1,0,1,0]=>1 [1,0,1,0,1,1,0,0,1,1,0,0]=>2 [1,0,1,0,1,1,0,1,0,0,1,0]=>2 [1,0,1,0,1,1,0,1,0,1,0,0]=>3 [1,0,1,0,1,1,0,1,1,0,0,0]=>3 [1,0,1,0,1,1,1,0,0,0,1,0]=>2 [1,0,1,0,1,1,1,0,0,1,0,0]=>3 [1,0,1,0,1,1,1,0,1,0,0,0]=>3 [1,0,1,0,1,1,1,1,0,0,0,0]=>3 [1,0,1,1,0,0,1,0,1,0,1,0]=>1 [1,0,1,1,0,0,1,0,1,1,0,0]=>2 [1,0,1,1,0,0,1,1,0,0,1,0]=>2 [1,0,1,1,0,0,1,1,0,1,0,0]=>3 [1,0,1,1,0,0,1,1,1,0,0,0]=>3 [1,0,1,1,0,1,0,0,1,0,1,0]=>2 [1,0,1,1,0,1,0,0,1,1,0,0]=>3 [1,0,1,1,0,1,0,1,0,0,1,0]=>3 [1,0,1,1,0,1,0,1,0,1,0,0]=>4 [1,0,1,1,0,1,0,1,1,0,0,0]=>4 [1,0,1,1,0,1,1,0,0,0,1,0]=>3 [1,0,1,1,0,1,1,0,0,1,0,0]=>4 [1,0,1,1,0,1,1,0,1,0,0,0]=>4 [1,0,1,1,0,1,1,1,0,0,0,0]=>4 [1,0,1,1,1,0,0,0,1,0,1,0]=>2 [1,0,1,1,1,0,0,0,1,1,0,0]=>3 [1,0,1,1,1,0,0,1,0,0,1,0]=>3 [1,0,1,1,1,0,0,1,0,1,0,0]=>4 [1,0,1,1,1,0,0,1,1,0,0,0]=>4 [1,0,1,1,1,0,1,0,0,0,1,0]=>3 [1,0,1,1,1,0,1,0,0,1,0,0]=>4 [1,0,1,1,1,0,1,0,1,0,0,0]=>4 [1,0,1,1,1,0,1,1,0,0,0,0]=>4 [1,0,1,1,1,1,0,0,0,0,1,0]=>3 [1,0,1,1,1,1,0,0,0,1,0,0]=>4 [1,0,1,1,1,1,0,0,1,0,0,0]=>4 [1,0,1,1,1,1,0,1,0,0,0,0]=>4 [1,0,1,1,1,1,1,0,0,0,0,0]=>4 [1,1,0,0,1,0,1,0,1,0,1,0]=>1 [1,1,0,0,1,0,1,0,1,1,0,0]=>2 [1,1,0,0,1,0,1,1,0,0,1,0]=>2 [1,1,0,0,1,0,1,1,0,1,0,0]=>3 [1,1,0,0,1,0,1,1,1,0,0,0]=>3 [1,1,0,0,1,1,0,0,1,0,1,0]=>2 [1,1,0,0,1,1,0,0,1,1,0,0]=>3 [1,1,0,0,1,1,0,1,0,0,1,0]=>3 [1,1,0,0,1,1,0,1,0,1,0,0]=>4 [1,1,0,0,1,1,0,1,1,0,0,0]=>4 [1,1,0,0,1,1,1,0,0,0,1,0]=>3 [1,1,0,0,1,1,1,0,0,1,0,0]=>4 [1,1,0,0,1,1,1,0,1,0,0,0]=>4 [1,1,0,0,1,1,1,1,0,0,0,0]=>4 [1,1,0,1,0,0,1,0,1,0,1,0]=>2 [1,1,0,1,0,0,1,0,1,1,0,0]=>3 [1,1,0,1,0,0,1,1,0,0,1,0]=>3 [1,1,0,1,0,0,1,1,0,1,0,0]=>4 [1,1,0,1,0,0,1,1,1,0,0,0]=>4 [1,1,0,1,0,1,0,0,1,0,1,0]=>3 [1,1,0,1,0,1,0,0,1,1,0,0]=>4 [1,1,0,1,0,1,0,1,0,0,1,0]=>4 [1,1,0,1,0,1,0,1,0,1,0,0]=>5 [1,1,0,1,0,1,0,1,1,0,0,0]=>5 [1,1,0,1,0,1,1,0,0,0,1,0]=>4 [1,1,0,1,0,1,1,0,0,1,0,0]=>5 [1,1,0,1,0,1,1,0,1,0,0,0]=>5 [1,1,0,1,0,1,1,1,0,0,0,0]=>5 [1,1,0,1,1,0,0,0,1,0,1,0]=>3 [1,1,0,1,1,0,0,0,1,1,0,0]=>4 [1,1,0,1,1,0,0,1,0,0,1,0]=>4 [1,1,0,1,1,0,0,1,0,1,0,0]=>5 [1,1,0,1,1,0,0,1,1,0,0,0]=>5 [1,1,0,1,1,0,1,0,0,0,1,0]=>4 [1,1,0,1,1,0,1,0,0,1,0,0]=>5 [1,1,0,1,1,0,1,0,1,0,0,0]=>5 [1,1,0,1,1,0,1,1,0,0,0,0]=>5 [1,1,0,1,1,1,0,0,0,0,1,0]=>4 [1,1,0,1,1,1,0,0,0,1,0,0]=>5 [1,1,0,1,1,1,0,0,1,0,0,0]=>5 [1,1,0,1,1,1,0,1,0,0,0,0]=>5 [1,1,0,1,1,1,1,0,0,0,0,0]=>5 [1,1,1,0,0,0,1,0,1,0,1,0]=>2 [1,1,1,0,0,0,1,0,1,1,0,0]=>3 [1,1,1,0,0,0,1,1,0,0,1,0]=>3 [1,1,1,0,0,0,1,1,0,1,0,0]=>4 [1,1,1,0,0,0,1,1,1,0,0,0]=>4 [1,1,1,0,0,1,0,0,1,0,1,0]=>3 [1,1,1,0,0,1,0,0,1,1,0,0]=>4 [1,1,1,0,0,1,0,1,0,0,1,0]=>4 [1,1,1,0,0,1,0,1,0,1,0,0]=>5 [1,1,1,0,0,1,0,1,1,0,0,0]=>5 [1,1,1,0,0,1,1,0,0,0,1,0]=>4 [1,1,1,0,0,1,1,0,0,1,0,0]=>5 [1,1,1,0,0,1,1,0,1,0,0,0]=>5 [1,1,1,0,0,1,1,1,0,0,0,0]=>5 [1,1,1,0,1,0,0,0,1,0,1,0]=>3 [1,1,1,0,1,0,0,0,1,1,0,0]=>4 [1,1,1,0,1,0,0,1,0,0,1,0]=>4 [1,1,1,0,1,0,0,1,0,1,0,0]=>5 [1,1,1,0,1,0,0,1,1,0,0,0]=>5 [1,1,1,0,1,0,1,0,0,0,1,0]=>4 [1,1,1,0,1,0,1,0,0,1,0,0]=>5 [1,1,1,0,1,0,1,0,1,0,0,0]=>5 [1,1,1,0,1,0,1,1,0,0,0,0]=>5 [1,1,1,0,1,1,0,0,0,0,1,0]=>4 [1,1,1,0,1,1,0,0,0,1,0,0]=>5 [1,1,1,0,1,1,0,0,1,0,0,0]=>5 [1,1,1,0,1,1,0,1,0,0,0,0]=>5 [1,1,1,0,1,1,1,0,0,0,0,0]=>5 [1,1,1,1,0,0,0,0,1,0,1,0]=>3 [1,1,1,1,0,0,0,0,1,1,0,0]=>4 [1,1,1,1,0,0,0,1,0,0,1,0]=>4 [1,1,1,1,0,0,0,1,0,1,0,0]=>5 [1,1,1,1,0,0,0,1,1,0,0,0]=>5 [1,1,1,1,0,0,1,0,0,0,1,0]=>4 [1,1,1,1,0,0,1,0,0,1,0,0]=>5 [1,1,1,1,0,0,1,0,1,0,0,0]=>5 [1,1,1,1,0,0,1,1,0,0,0,0]=>5 [1,1,1,1,0,1,0,0,0,0,1,0]=>4 [1,1,1,1,0,1,0,0,0,1,0,0]=>5 [1,1,1,1,0,1,0,0,1,0,0,0]=>5 [1,1,1,1,0,1,0,1,0,0,0,0]=>5 [1,1,1,1,0,1,1,0,0,0,0,0]=>5 [1,1,1,1,1,0,0,0,0,0,1,0]=>4 [1,1,1,1,1,0,0,0,0,1,0,0]=>5 [1,1,1,1,1,0,0,0,1,0,0,0]=>5 [1,1,1,1,1,0,0,1,0,0,0,0]=>5 [1,1,1,1,1,0,1,0,0,0,0,0]=>5 [1,1,1,1,1,1,0,0,0,0,0,0]=>5
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of simple summands of the module J^2/J^3. Here J is the Jacobson radical of the Nakayama algebra algebra corresponding to the Dyck path.
Code
DeclareOperation("testlk",[IsList]);

InstallMethod(testlk, "for a representation of a quiver", [IsList],0,function(LIST)

local A,RegA,J,JJ,JJJ,T,TT,U;

A:=LIST[1];
RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A));J:=RadicalOfModule(RegA);JJ:=RadicalOfModule(J);
if Dimension(JJ)=0 then return(0);else 
T:=RadicalOfModuleInclusion(JJ);
TT:=CoKernel(T);U:=DecomposeModule(TT);
return(Size(U));fi;



end);

Created
Oct 14, 2019 at 11:23 by Rene Marczinzik
Updated
Oct 14, 2019 at 11:23 by Rene Marczinzik