Identifier
- St001485: Binary words ⟶ ℤ
Values
0 => 0
1 => 0
00 => 0
01 => 0
10 => 1
11 => 0
000 => 0
001 => 0
010 => 2
011 => 0
100 => 1
101 => 1
110 => 2
111 => 0
0000 => 0
0001 => 0
0010 => 3
0011 => 0
0100 => 2
0101 => 2
0110 => 3
0111 => 0
1000 => 1
1001 => 1
1010 => 0
1011 => 1
1100 => 2
1101 => 2
1110 => 3
1111 => 0
00000 => 0
00001 => 0
00010 => 4
00011 => 0
00100 => 3
00101 => 3
00110 => 4
00111 => 0
01000 => 2
01001 => 2
01010 => 1
01011 => 2
01100 => 3
01101 => 3
01110 => 4
01111 => 0
10000 => 1
10001 => 1
10010 => 0
10011 => 1
10100 => 4
10101 => 4
10110 => 0
10111 => 1
11000 => 2
11001 => 2
11010 => 1
11011 => 2
11100 => 3
11101 => 3
11110 => 4
11111 => 0
000000 => 0
000001 => 0
000010 => 5
000011 => 0
000100 => 4
000101 => 4
000110 => 5
000111 => 0
001000 => 3
001001 => 3
001010 => 2
001011 => 3
001100 => 4
001101 => 4
001110 => 5
001111 => 0
010000 => 2
010001 => 2
010010 => 1
010011 => 2
010100 => 0
010101 => 0
010110 => 1
010111 => 2
011000 => 3
011001 => 3
011010 => 2
011011 => 3
011100 => 4
011101 => 4
011110 => 5
011111 => 0
100000 => 1
100001 => 1
100010 => 0
100011 => 1
100100 => 5
100101 => 5
100110 => 0
>>> Load all 1022 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The modular major index of a binary word.
This is St000290The major index of a binary word. modulo the length of the word.
This is St000290The major index of a binary word. modulo the length of the word.
References
[1] Swanson, J. P. Major Index Statistics: Cyclic Sieving, Branching Rules, and Asymptotics MathSciNet:3885578
Code
def statistic(w):
return w.major_index() % len(w)
Created
Oct 24, 2019 at 13:25 by Martin Rubey
Updated
Oct 24, 2019 at 13:25 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!