Identifier
Values
([(0,1)],2) => [1] => [[1],[]] => 1
([(1,2)],3) => [1] => [[1],[]] => 1
([(0,2),(1,2)],3) => [1,1] => [[1,1],[]] => 2
([(0,1),(0,2),(1,2)],3) => [3] => [[3],[]] => 2
([(2,3)],4) => [1] => [[1],[]] => 1
([(1,3),(2,3)],4) => [1,1] => [[1,1],[]] => 2
([(0,3),(1,3),(2,3)],4) => [1,1,1] => [[1,1,1],[]] => 2
([(0,3),(1,2)],4) => [1,1] => [[1,1],[]] => 2
([(0,3),(1,2),(2,3)],4) => [1,1,1] => [[1,1,1],[]] => 2
([(1,2),(1,3),(2,3)],4) => [3] => [[3],[]] => 2
([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [[3,1],[]] => 3
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [[4],[]] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => [[5],[]] => 2
([(3,4)],5) => [1] => [[1],[]] => 1
([(2,4),(3,4)],5) => [1,1] => [[1,1],[]] => 2
([(1,4),(2,4),(3,4)],5) => [1,1,1] => [[1,1,1],[]] => 2
([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(1,4),(2,3)],5) => [1,1] => [[1,1],[]] => 2
([(1,4),(2,3),(3,4)],5) => [1,1,1] => [[1,1,1],[]] => 2
([(0,1),(2,4),(3,4)],5) => [1,1,1] => [[1,1,1],[]] => 2
([(2,3),(2,4),(3,4)],5) => [3] => [[3],[]] => 2
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => [[3,1],[]] => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [[3,1,1],[]] => 3
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [[4],[]] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [4,1] => [[4,1],[]] => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [[5],[]] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [[3,1,1],[]] => 3
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [[3,1],[]] => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => [[3,1,1],[]] => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => [[5],[]] => 2
([(4,5)],6) => [1] => [[1],[]] => 1
([(3,5),(4,5)],6) => [1,1] => [[1,1],[]] => 2
([(2,5),(3,5),(4,5)],6) => [1,1,1] => [[1,1,1],[]] => 2
([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(2,5),(3,4)],6) => [1,1] => [[1,1],[]] => 2
([(2,5),(3,4),(4,5)],6) => [1,1,1] => [[1,1,1],[]] => 2
([(1,2),(3,5),(4,5)],6) => [1,1,1] => [[1,1,1],[]] => 2
([(3,4),(3,5),(4,5)],6) => [3] => [[3],[]] => 2
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => [[3,1],[]] => 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [[3,1,1],[]] => 3
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [[4],[]] => 2
([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1] => [[4,1],[]] => 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => [[5],[]] => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => [[3,1,1],[]] => 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [[1,1,1],[]] => 2
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [[3,1],[]] => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => [[3,1,1],[]] => 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [[3,1,1],[]] => 3
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => [[5],[]] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [[4,1],[]] => 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => [[3,1,1],[]] => 3
([(5,6)],7) => [1] => [[1],[]] => 1
([(4,6),(5,6)],7) => [1,1] => [[1,1],[]] => 2
([(3,6),(4,6),(5,6)],7) => [1,1,1] => [[1,1,1],[]] => 2
([(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(3,6),(4,5)],7) => [1,1] => [[1,1],[]] => 2
([(3,6),(4,5),(5,6)],7) => [1,1,1] => [[1,1,1],[]] => 2
([(2,3),(4,6),(5,6)],7) => [1,1,1] => [[1,1,1],[]] => 2
([(4,5),(4,6),(5,6)],7) => [3] => [[3],[]] => 2
([(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(1,2),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(3,6),(4,5),(4,6),(5,6)],7) => [3,1] => [[3,1],[]] => 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [[3,1,1],[]] => 3
([(3,5),(3,6),(4,5),(4,6)],7) => [4] => [[4],[]] => 2
([(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [4,1] => [[4,1],[]] => 3
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5] => [[5],[]] => 2
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1] => [[3,1,1],[]] => 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(1,6),(2,5),(3,4)],7) => [1,1,1] => [[1,1,1],[]] => 2
([(2,6),(3,5),(4,5),(4,6)],7) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(1,2),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(0,3),(1,2),(4,6),(5,6)],7) => [1,1,1,1] => [[1,1,1,1],[]] => 2
([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => [[3,1],[]] => 3
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1] => [[3,1,1],[]] => 3
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [[3,1,1],[]] => 3
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5] => [[5],[]] => 2
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,1] => [[4,1],[]] => 3
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,1,1] => [[3,1,1],[]] => 3
>>> Load all 103 entries. <<<
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => 2
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,1,1] => [[3,1,1],[]] => 3
search for individual values
searching the database for the individual values of this statistic
Description
The number of corners of a skew partition.
This is also known as the number of removable cells of the skew partition.
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.
Map
to skew partition
Description
The partition regarded as a skew partition.