Identifier
-
Mp00275:
Graphs
—to edge-partition of connected components⟶
Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001490: Skew partitions ⟶ ℤ
Values
([(0,1)],2) => [1] => [[1],[]] => 1
([(1,2)],3) => [1] => [[1],[]] => 1
([(0,2),(1,2)],3) => [2] => [[2],[]] => 1
([(0,1),(0,2),(1,2)],3) => [3] => [[3],[]] => 1
([(2,3)],4) => [1] => [[1],[]] => 1
([(1,3),(2,3)],4) => [2] => [[2],[]] => 1
([(0,3),(1,3),(2,3)],4) => [3] => [[3],[]] => 1
([(0,3),(1,2)],4) => [1,1] => [[1,1],[]] => 1
([(0,3),(1,2),(2,3)],4) => [3] => [[3],[]] => 1
([(1,2),(1,3),(2,3)],4) => [3] => [[3],[]] => 1
([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [[4],[]] => 1
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [[4],[]] => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => [[5],[]] => 1
([(3,4)],5) => [1] => [[1],[]] => 1
([(2,4),(3,4)],5) => [2] => [[2],[]] => 1
([(1,4),(2,4),(3,4)],5) => [3] => [[3],[]] => 1
([(0,4),(1,4),(2,4),(3,4)],5) => [4] => [[4],[]] => 1
([(1,4),(2,3)],5) => [1,1] => [[1,1],[]] => 1
([(1,4),(2,3),(3,4)],5) => [3] => [[3],[]] => 1
([(0,1),(2,4),(3,4)],5) => [2,1] => [[2,1],[]] => 1
([(2,3),(2,4),(3,4)],5) => [3] => [[3],[]] => 1
([(0,4),(1,4),(2,3),(3,4)],5) => [4] => [[4],[]] => 1
([(1,4),(2,3),(2,4),(3,4)],5) => [4] => [[4],[]] => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [[5],[]] => 1
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [[4],[]] => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [5] => [[5],[]] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [[5],[]] => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [5] => [[5],[]] => 1
([(0,4),(1,3),(2,3),(2,4)],5) => [4] => [[4],[]] => 1
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [[3,1],[]] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [5] => [[5],[]] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => [[5],[]] => 1
([(4,5)],6) => [1] => [[1],[]] => 1
([(3,5),(4,5)],6) => [2] => [[2],[]] => 1
([(2,5),(3,5),(4,5)],6) => [3] => [[3],[]] => 1
([(1,5),(2,5),(3,5),(4,5)],6) => [4] => [[4],[]] => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5] => [[5],[]] => 1
([(2,5),(3,4)],6) => [1,1] => [[1,1],[]] => 1
([(2,5),(3,4),(4,5)],6) => [3] => [[3],[]] => 1
([(1,2),(3,5),(4,5)],6) => [2,1] => [[2,1],[]] => 1
([(3,4),(3,5),(4,5)],6) => [3] => [[3],[]] => 1
([(1,5),(2,5),(3,4),(4,5)],6) => [4] => [[4],[]] => 1
([(0,1),(2,5),(3,5),(4,5)],6) => [3,1] => [[3,1],[]] => 1
([(2,5),(3,4),(3,5),(4,5)],6) => [4] => [[4],[]] => 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5] => [[5],[]] => 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [5] => [[5],[]] => 1
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [[4],[]] => 1
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2] => [[2,2],[]] => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [5] => [[5],[]] => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5] => [[5],[]] => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => [[5],[]] => 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [5] => [[5],[]] => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [5] => [[5],[]] => 1
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [[1,1,1],[]] => 1
([(1,5),(2,4),(3,4),(3,5)],6) => [4] => [[4],[]] => 1
([(0,1),(2,5),(3,4),(4,5)],6) => [3,1] => [[3,1],[]] => 1
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [[3,1],[]] => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5] => [[5],[]] => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [5] => [[5],[]] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,1] => [[4,1],[]] => 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => [[5],[]] => 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [5] => [[5],[]] => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [[4,1],[]] => 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,2] => [[3,2],[]] => 1
([(5,6)],7) => [1] => [[1],[]] => 1
([(4,6),(5,6)],7) => [2] => [[2],[]] => 1
([(3,6),(4,6),(5,6)],7) => [3] => [[3],[]] => 1
([(2,6),(3,6),(4,6),(5,6)],7) => [4] => [[4],[]] => 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [5] => [[5],[]] => 1
([(3,6),(4,5)],7) => [1,1] => [[1,1],[]] => 1
([(3,6),(4,5),(5,6)],7) => [3] => [[3],[]] => 1
([(2,3),(4,6),(5,6)],7) => [2,1] => [[2,1],[]] => 1
([(4,5),(4,6),(5,6)],7) => [3] => [[3],[]] => 1
([(2,6),(3,6),(4,5),(5,6)],7) => [4] => [[4],[]] => 1
([(1,2),(3,6),(4,6),(5,6)],7) => [3,1] => [[3,1],[]] => 1
([(3,6),(4,5),(4,6),(5,6)],7) => [4] => [[4],[]] => 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [5] => [[5],[]] => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [4,1] => [[4,1],[]] => 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5] => [[5],[]] => 1
([(3,5),(3,6),(4,5),(4,6)],7) => [4] => [[4],[]] => 1
([(1,6),(2,6),(3,5),(4,5)],7) => [2,2] => [[2,2],[]] => 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5] => [[5],[]] => 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [5] => [[5],[]] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [3,2] => [[3,2],[]] => 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5] => [[5],[]] => 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5] => [[5],[]] => 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [5] => [[5],[]] => 1
([(1,6),(2,5),(3,4)],7) => [1,1,1] => [[1,1,1],[]] => 1
([(2,6),(3,5),(4,5),(4,6)],7) => [4] => [[4],[]] => 1
([(1,2),(3,6),(4,5),(5,6)],7) => [3,1] => [[3,1],[]] => 1
([(0,3),(1,2),(4,6),(5,6)],7) => [2,1,1] => [[2,1,1],[]] => 1
([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => [[3,1],[]] => 1
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [5] => [[5],[]] => 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [4,1] => [[4,1],[]] => 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5] => [[5],[]] => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,1] => [[4,1],[]] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5] => [[5],[]] => 1
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => [5] => [[5],[]] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,1] => [[4,1],[]] => 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [3,2] => [[3,2],[]] => 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,2] => [[3,2],[]] => 1
>>> Load all 103 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of connected components of a skew partition.
Map
to skew partition
Description
The partition regarded as a skew partition.
Map
to edge-partition of connected components
Description
Sends a graph to the partition recording the number of edges in its connected components.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!