Identifier
-
Mp00099:
Dyck paths
—bounce path⟶
Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001498: Dyck paths ⟶ ℤ
Values
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 2
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => 3
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => 3
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => 3
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => 3
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 3
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 3
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 3
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 3
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 2
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 4
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 3
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 4
[1,0,1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 4
[1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 4
[1,0,1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 4
[1,0,1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 4
[1,0,1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 4
[1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 3
[1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 3
[1,0,1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 3
[1,0,1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 3
[1,0,1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 4
[1,0,1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 3
[1,0,1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 4
[1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => 3
[1,0,1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 3
[1,0,1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,0,1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 4
[1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => 3
[1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 4
[1,1,0,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 4
[1,1,0,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,1,0,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 4
[1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 4
[1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 4
[1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 4
[1,1,0,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 3
[1,1,0,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 3
[1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 3
[1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 3
[1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,1,1,1,0,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 4
[1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 3
[1,1,0,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 4
[1,1,0,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => 3
[1,1,0,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 3
[1,1,0,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
[1,1,0,1,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 4
[1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => 3
[1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 5
>>> Load all 187 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The normalised height of a Nakayama algebra with magnitude 1.
We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Map
peeling map
Description
Send a Dyck path to its peeled Dyck path.
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!