Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
St001500: Dyck paths ⟶ ℤ
Values
[1,0] => [1,1,0,0] => [1,0,1,0] => [1,1,0,0] => 1
[1,0,1,0] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => 2
[1,1,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => 3
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0] => 4
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0] => 3
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,0] => 2
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 3
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 6
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => 4
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => 4
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => 3
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => 5
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 4
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => 3
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 4
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => 5
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => 5
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 3
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => 5
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 7
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 8
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => 6
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 6
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,1,1,0,0,1,0,0] => 4
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 6
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => 4
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => 6
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => 5
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,1,0,1,0,0] => 5
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 4
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => 3
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => 5
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => 7
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 6
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => 4
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => 3
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => 5
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => 6
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => 4
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 4
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => 5
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 7
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 4
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => 5
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => 5
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => 7
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 4
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => 3
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => 4
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => 5
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => 5
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => 4
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 5
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => 7
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => 7
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 3
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => 5
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => 7
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 9
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => 10
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => 8
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => 8
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0] => 6
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0] => 6
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => 8
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0] => 6
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0] => 8
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,1,0,1,0,0,1,0,0] => 5
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,1,0,1,0,0] => 5
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => 6
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,1,1,0,0,0,1,0,0] => 4
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0] => 5
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0] => 7
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => 8
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,1,0,0] => 6
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => 6
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,1,0,0] => 4
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,1,0,0] => 8
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0,1,1,0,1,0,0] => 6
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,1,0,0] => 6
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,1,0,1,0,1,0,0,1,0,0] => 5
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,1,0,1,0,0,1,0,1,0,0] => 7
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0,1,1,0,0] => 6
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,1,0,0] => 5
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,1,0,0,1,1,0,0,1,0,0] => 5
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,0,0,1,0,1,0,1,0,0] => 7
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => 6
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,1,0,0] => 4
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0,1,1,0,0] => 6
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,1,1,0,0,1,0,0,1,0,0] => 5
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,1,0,1,0,0] => 5
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0,1,1,0,0] => 6
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,1,0,1,0,0,0,1,0,0] => 5
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,1,0,0,1,0,0] => 7
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,1,0,0,1,0,1,0,0] => 7
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The global dimension of magnitude 1 Nakayama algebras.
We use the code below to translate them to Dyck paths.
We use the code below to translate them to Dyck paths.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
inverse promotion
Description
The inverse promotion of a Dyck path.
This is the bijection obtained by applying the inverse of Schützenberger's promotion to the corresponding two rowed standard Young tableau.
This is the bijection obtained by applying the inverse of Schützenberger's promotion to the corresponding two rowed standard Young tableau.
Map
swap returns and last descent
Description
Return a Dyck path with number of returns and length of the last descent interchanged.
This is the specialisation of the map $\Phi$ in [1] to Dyck paths. It is characterised by the fact that the number of up steps before a down step that is neither a return nor part of the last descent is preserved.
This is the specialisation of the map $\Phi$ in [1] to Dyck paths. It is characterised by the fact that the number of up steps before a down step that is neither a return nor part of the last descent is preserved.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!