Identifier
- St001503: Dyck paths ⟶ ℤ
Values
[1,0] => 1
[1,0,1,0] => 1
[1,1,0,0] => 1
[1,0,1,0,1,0] => 2
[1,0,1,1,0,0] => 1
[1,1,0,0,1,0] => 1
[1,1,0,1,0,0] => 1
[1,1,1,0,0,0] => 1
[1,0,1,0,1,0,1,0] => 2
[1,0,1,0,1,1,0,0] => 2
[1,0,1,1,0,0,1,0] => 1
[1,0,1,1,0,1,0,0] => 2
[1,0,1,1,1,0,0,0] => 1
[1,1,0,0,1,0,1,0] => 2
[1,1,0,0,1,1,0,0] => 1
[1,1,0,1,0,0,1,0] => 2
[1,1,0,1,0,1,0,0] => 2
[1,1,0,1,1,0,0,0] => 1
[1,1,1,0,0,0,1,0] => 1
[1,1,1,0,0,1,0,0] => 1
[1,1,1,0,1,0,0,0] => 1
[1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,0] => 3
[1,0,1,0,1,0,1,1,0,0] => 2
[1,0,1,0,1,1,0,0,1,0] => 2
[1,0,1,0,1,1,0,1,0,0] => 2
[1,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,1,0,0] => 1
[1,0,1,1,0,1,0,0,1,0] => 2
[1,0,1,1,0,1,0,1,0,0] => 2
[1,0,1,1,0,1,1,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,0] => 1
[1,0,1,1,1,0,0,1,0,0] => 1
[1,0,1,1,1,0,1,0,0,0] => 2
[1,0,1,1,1,1,0,0,0,0] => 1
[1,1,0,0,1,0,1,0,1,0] => 2
[1,1,0,0,1,0,1,1,0,0] => 2
[1,1,0,0,1,1,0,0,1,0] => 1
[1,1,0,0,1,1,0,1,0,0] => 2
[1,1,0,0,1,1,1,0,0,0] => 1
[1,1,0,1,0,0,1,0,1,0] => 2
[1,1,0,1,0,0,1,1,0,0] => 2
[1,1,0,1,0,1,0,0,1,0] => 2
[1,1,0,1,0,1,0,1,0,0] => 2
[1,1,0,1,0,1,1,0,0,0] => 2
[1,1,0,1,1,0,0,0,1,0] => 1
[1,1,0,1,1,0,0,1,0,0] => 2
[1,1,0,1,1,0,1,0,0,0] => 2
[1,1,0,1,1,1,0,0,0,0] => 1
[1,1,1,0,0,0,1,0,1,0] => 2
[1,1,1,0,0,0,1,1,0,0] => 1
[1,1,1,0,0,1,0,0,1,0] => 2
[1,1,1,0,0,1,0,1,0,0] => 2
[1,1,1,0,0,1,1,0,0,0] => 1
[1,1,1,0,1,0,0,0,1,0] => 2
[1,1,1,0,1,0,0,1,0,0] => 2
[1,1,1,0,1,0,1,0,0,0] => 2
[1,1,1,0,1,1,0,0,0,0] => 1
[1,1,1,1,0,0,0,0,1,0] => 1
[1,1,1,1,0,0,0,1,0,0] => 1
[1,1,1,1,0,0,1,0,0,0] => 1
[1,1,1,1,0,1,0,0,0,0] => 1
[1,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,0,1,0] => 3
[1,0,1,0,1,0,1,0,1,1,0,0] => 3
[1,0,1,0,1,0,1,1,0,0,1,0] => 2
[1,0,1,0,1,0,1,1,0,1,0,0] => 3
[1,0,1,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => 3
[1,0,1,0,1,1,0,1,0,1,0,0] => 3
[1,0,1,0,1,1,0,1,1,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => 2
[1,0,1,0,1,1,1,0,0,1,0,0] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,0,1,1,0,0] => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => 1
[1,0,1,1,0,0,1,1,0,1,0,0] => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => 1
[1,0,1,1,0,1,0,0,1,0,1,0] => 3
[1,0,1,1,0,1,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => 3
[1,0,1,1,0,1,0,1,0,1,0,0] => 2
[1,0,1,1,0,1,0,1,1,0,0,0] => 2
[1,0,1,1,0,1,1,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => 2
[1,0,1,1,0,1,1,0,1,0,0,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => 1
[1,0,1,1,1,0,0,1,0,0,1,0] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => 1
[1,0,1,1,1,0,1,0,0,0,1,0] => 2
[1,0,1,1,1,0,1,0,0,1,0,0] => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => 2
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra.
Created
Nov 20, 2019 at 20:56 by Rene Marczinzik
Updated
Nov 20, 2019 at 20:56 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!