Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
St001504: Dyck paths ⟶ ℤ
Values
[1,0] => [1,1,0,0] => [1,0,1,0] => 2
[1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 2
[1,1,0,0] => [1,1,1,0,0,0] => [1,1,0,0,1,0] => 3
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 2
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => 4
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,0,1,0,1,0] => 3
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,0,1,0] => 3
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0] => 4
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 2
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 4
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => 4
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 4
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => 5
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => 3
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => 5
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 3
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => 3
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,0,0,0,1,0] => 5
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => 4
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => 4
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => 4
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => 5
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 2
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 4
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => 4
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => 4
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => 5
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 4
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 6
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => 4
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => 4
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => 6
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 5
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => 5
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => 5
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 6
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 3
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => 5
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 5
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => 5
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 3
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => 5
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => 3
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 3
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => 5
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => 5
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => 5
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => 5
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 6
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 4
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => 4
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => 4
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => 6
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 4
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 4
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => 4
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 6
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 5
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => 5
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => 5
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 5
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 6
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => 2
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => 4
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => 4
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => 4
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => 5
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => 4
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => 6
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => 4
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => 4
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0] => 6
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => 5
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0] => 5
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0] => 5
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => 6
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => 4
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => 6
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0,1,0] => 6
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 7
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => 4
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0,1,0] => 6
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => 4
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0,1,0] => 4
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0,1,0] => 6
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0,1,0] => 6
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0,1,0] => 6
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0,1,0] => 6
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0,1,0] => 7
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => 5
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 7
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0,1,0] => 5
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,1,0,0,1,0] => 5
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0,1,0] => 7
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0,1,0] => 5
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0,1,0] => 5
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0,1,0] => 5
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0,1,0] => 7
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
inverse promotion
Description
The inverse promotion of a Dyck path.
This is the bijection obtained by applying the inverse of Schützenberger's promotion to the corresponding two rowed standard Young tableau.
This is the bijection obtained by applying the inverse of Schützenberger's promotion to the corresponding two rowed standard Young tableau.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!