Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
St001506: Dyck paths ⟶ ℤ
Values
[1,0] => [1,1,0,0] => [1,0,1,0] => [1,1,0,0] => 0
[1,0,1,0] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => 1
[1,1,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => 1
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => 1
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 1
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0] => 2
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0] => 1
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 2
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => 1
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 2
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => 1
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => 2
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 1
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => 2
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,1,1,0,0,0] => 2
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => 1
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => 2
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 3
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => 2
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => 2
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 3
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 1
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => 1
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => 1
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => 2
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => 1
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 3
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => 2
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => 3
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => 2
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => 3
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => 2
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => 3
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,0,1,0,0,0] => 1
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => 2
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 2
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 1
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => 2
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 3
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => 2
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => 2
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => 3
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => 1
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => 2
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => 2
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => 2
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 3
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 3
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,1,1,0,0,1,0,0] => 2
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,1,0,1,0,0] => 2
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => 3
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 4
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => 3
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => 2
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => 3
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => 2
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,1,1,0,0,1,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,1,0,0] => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => 2
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,1,0,0] => 1
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,1,1,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => 3
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,1,0,0] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,1,1,0,0,0] => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => 3
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0,1,1,0,0] => [1,1,1,0,0,1,0,0,1,1,1,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,1,0,0,1,0,0,0] => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0,1,1,0,0] => 3
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,1,1,0,0,1,0,0,0] => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => 3
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,1,1,0,0,0,0] => 1
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,1,0,0,0,1,1,0,0,0] => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => 2
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,1,1,0,0,0] => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,1,0,0] => 2
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => 3
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,1,1,0,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,1,1,0,0,0] => 2
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,1,0,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => 3
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,1,0,1,1,0,0,1,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,1,0,0,1,0,0] => 3
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,1,1,1,0,0,1,0,0,0] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,1,1,0,0,1,0,0,1,0,0] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,1,0,0] => 3
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => 3
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,1,0,0] => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,1,0,1,0,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => 3
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
inverse promotion
Description
The inverse promotion of a Dyck path.
This is the bijection obtained by applying the inverse of Schützenberger's promotion to the corresponding two rowed standard Young tableau.
This is the bijection obtained by applying the inverse of Schützenberger's promotion to the corresponding two rowed standard Young tableau.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!