Identifier
-
Mp00251:
Graphs
—clique sizes⟶
Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
St001508: Dyck paths ⟶ ℤ
Values
([],1) => [1] => [1,0] => [1,0] => 0
([],2) => [1,1] => [1,1,0,0] => [1,1,0,0] => 1
([(0,1)],2) => [2] => [1,0,1,0] => [1,0,1,0] => 0
([],3) => [1,1,1] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => 1
([(1,2)],3) => [2,1] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 2
([(0,2),(1,2)],3) => [2,2] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => 1
([(0,1),(0,2),(1,2)],3) => [3] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => 0
([],4) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => 1
([(2,3)],4) => [2,1,1] => [1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,0] => 2
([(1,3),(2,3)],4) => [2,2,1] => [1,1,1,0,0,1,0,0] => [1,1,1,0,0,0,1,0] => 1
([(0,3),(1,3),(2,3)],4) => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 2
([(0,3),(1,2)],4) => [2,2] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => 1
([(0,3),(1,2),(2,3)],4) => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 2
([(1,2),(1,3),(2,3)],4) => [3,1] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => 3
([(0,3),(1,2),(1,3),(2,3)],4) => [3,2] => [1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,3] => [1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 0
([],5) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => 1
([(3,4)],5) => [2,1,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => 2
([(2,4),(3,4)],5) => [2,2,1,1] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => 1
([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => 3
([(0,4),(1,4),(2,4),(3,4)],5) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
([(1,4),(2,3)],5) => [2,2,1] => [1,1,1,0,0,1,0,0] => [1,1,1,0,0,0,1,0] => 1
([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => 3
([(0,1),(2,4),(3,4)],5) => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 2
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => 3
([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
([(1,4),(2,3),(2,4),(3,4)],5) => [3,2,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => 3
([(1,3),(1,4),(2,3),(2,4)],5) => [2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 2
([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,4] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 0
([],6) => [1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 1
([(4,5)],6) => [2,1,1,1,1] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => 2
([(3,5),(4,5)],6) => [2,2,1,1,1] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 1
([(2,5),(3,5),(4,5)],6) => [2,2,2,1,1] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => 4
([(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
([(2,5),(3,4)],6) => [2,2,1,1] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => 1
([(2,5),(3,4),(4,5)],6) => [2,2,2,1,1] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => 4
([(1,2),(3,5),(4,5)],6) => [2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => 3
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => 3
([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => 3
([(0,1),(2,5),(3,5),(4,5)],6) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
([(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1,1] => [1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 4
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => 3
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,2,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,1] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => 4
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,1] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 3
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 2
([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => 3
([(0,1),(2,5),(3,4),(4,5)],6) => [2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,2,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 4
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,3,2,1] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => 4
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => 3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,1] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => 3
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => 3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => 3
>>> Load all 252 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary.
Given two lattice paths $U,L$ from $(0,0)$ to $(d,n-d)$, [1] describes a bijection between lattice paths weakly between $U$ and $L$ and subsets of $\{1,\dots,n\}$ such that the set of all such subsets gives the standard complex of the lattice path matroid $M[U,L]$.
This statistic gives the cardinality of the image of this bijection when a Dyck path is considered as a path weakly above the diagonal and relative to the diagonal boundary.
Given two lattice paths $U,L$ from $(0,0)$ to $(d,n-d)$, [1] describes a bijection between lattice paths weakly between $U$ and $L$ and subsets of $\{1,\dots,n\}$ such that the set of all such subsets gives the standard complex of the lattice path matroid $M[U,L]$.
This statistic gives the cardinality of the image of this bijection when a Dyck path is considered as a path weakly above the diagonal and relative to the diagonal boundary.
Map
Cori-Le Borgne involution
Description
The Cori-Le Borgne involution on Dyck paths.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite $\zeta\circ\mathrm{rev}\circ\zeta^{(-1)}$, where $\zeta$ is Mp00030zeta map.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite $\zeta\circ\mathrm{rev}\circ\zeta^{(-1)}$, where $\zeta$ is Mp00030zeta map.
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
clique sizes
Description
The integer partition of the sizes of the maximal cliques of a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!