Identifier
-
Mp00103:
Dyck paths
—peeling map⟶
Dyck paths
Mp00228: Dyck paths —reflect parallelogram polyomino⟶ Dyck paths
St001508: Dyck paths ⟶ ℤ
Values
[1,0] => [1,0] => [1,0] => 0
[1,0,1,0] => [1,0,1,0] => [1,1,0,0] => 1
[1,1,0,0] => [1,0,1,0] => [1,1,0,0] => 1
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => 2
[1,0,1,1,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => 2
[1,1,0,0,1,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => 2
[1,1,0,1,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => 2
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => 2
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 3
[1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 2
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 3
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 3
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 4
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 3
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => 3
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => 3
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => 3
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 2
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => 3
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 4
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 4
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 4
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary.
Given two lattice paths $U,L$ from $(0,0)$ to $(d,n-d)$, [1] describes a bijection between lattice paths weakly between $U$ and $L$ and subsets of $\{1,\dots,n\}$ such that the set of all such subsets gives the standard complex of the lattice path matroid $M[U,L]$.
This statistic gives the cardinality of the image of this bijection when a Dyck path is considered as a path weakly above the diagonal and relative to the diagonal boundary.
Given two lattice paths $U,L$ from $(0,0)$ to $(d,n-d)$, [1] describes a bijection between lattice paths weakly between $U$ and $L$ and subsets of $\{1,\dots,n\}$ such that the set of all such subsets gives the standard complex of the lattice path matroid $M[U,L]$.
This statistic gives the cardinality of the image of this bijection when a Dyck path is considered as a path weakly above the diagonal and relative to the diagonal boundary.
Map
reflect parallelogram polyomino
Description
Reflect the corresponding parallelogram polyomino, such that the first column becomes the first row.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
Map
peeling map
Description
Send a Dyck path to its peeled Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!