Processing math: 22%

Identifier
Values
[1,0] => [1,0] => [1] => [1] => 0
[1,0,1,0] => [1,0,1,0] => [1,2] => [1,2] => 0
[1,1,0,0] => [1,0,1,0] => [1,2] => [1,2] => 0
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0] => [1,0,1,0,1,0] => [1,2,3] => [1,2,3] => 0
[1,1,0,0,1,0] => [1,0,1,0,1,0] => [1,2,3] => [1,2,3] => 0
[1,1,0,1,0,0] => [1,0,1,0,1,0] => [1,2,3] => [1,2,3] => 0
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,2,3,4] => 0
[1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0] => [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,3,4,2,5] => [1,4,3,2,5] => 3
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,4,3,2,5] => [1,3,4,2,5] => 2
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => 1
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => 1
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => 1
>>> Load all 196 entries. <<<
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => 1
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => 1
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => 1
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,4,5,3,6] => [1,2,5,4,3,6] => 3
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,5,4,3,6] => [1,2,4,5,3,6] => 2
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => 1
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => 1
[1,1,0,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => 1
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => 1
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => 1
[1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => 1
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,4,5,3,6] => [1,2,5,4,3,6] => 3
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,5,4,3,6] => [1,2,4,5,3,6] => 2
[1,1,1,0,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => 1
[1,1,1,0,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => 1
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => 1
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => 1
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => 1
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,4,5,3,6] => [1,2,5,4,3,6] => 3
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,5,4,3,6] => [1,2,4,5,3,6] => 2
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => 1
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => 1
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => 1
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => 1
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => 1
[1,1,1,1,0,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => 1
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => 1
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => 1
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4,6] => [1,3,2,5,4,6] => 2
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,3,4,2,5,6] => [1,4,3,2,5,6] => 3
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,3,4,2,5,6] => [1,4,3,2,5,6] => 3
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,3,4,2,5,6] => [1,4,3,2,5,6] => 3
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,3,4,5,2,6] => [1,5,3,4,2,6] => 5
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,3,5,4,2,6] => [1,4,3,5,2,6] => 4
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,4,3,2,5,6] => [1,3,4,2,5,6] => 2
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,4,3,2,5,6] => [1,3,4,2,5,6] => 2
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,4,3,2,5,6] => [1,3,4,2,5,6] => 2
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,4,3,5,2,6] => [1,5,4,3,2,6] => 6
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,4,5,3,2,6] => [1,3,5,4,2,6] => 4
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,5,4,3,2,6] => [1,3,4,5,2,6] => 3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The minimal number of transpositions needed to sort a permutation in either direction.
For a permutation σ, this is min where \tau is the reverse permutation sending i to \sigma(n+1-i).
Map
to 312-avoiding permutation
Description
Sends a Dyck path to the 312-avoiding permutation according to Bandlow-Killpatrick.
This map is defined in [1] and sends the area (St000012The area of a Dyck path.) to the inversion number (St000018The number of inversions of a permutation.).
Map
peeling map
Description
Send a Dyck path to its peeled Dyck path.
Map
descent views to invisible inversion bottoms
Description
Return a permutation whose multiset of invisible inversion bottoms is the multiset of descent views of the given permutation.
An invisible inversion of a permutation \sigma is a pair i < j such that i < \sigma(j) < \sigma(i). The element \sigma(j) is then an invisible inversion bottom.
A descent view in a permutation \pi is an element \pi(j) such that \pi(i+1) < \pi(j) < \pi(i), and additionally the smallest element in the decreasing run containing \pi(i) is smaller than the smallest element in the decreasing run containing \pi(j).
This map is a bijection \chi:\mathfrak S_n \to \mathfrak S_n, such that
  • the multiset of descent views in \pi is the multiset of invisible inversion bottoms in \chi(\pi),
  • the set of left-to-right maxima of \pi is the set of maximal elements in the cycles of \chi(\pi),
  • the set of global ascent of \pi is the set of global ascent of \chi(\pi),
  • the set of maximal elements in the decreasing runs of \pi is the set of weak deficiency positions of \chi(\pi), and
  • the set of minimal elements in the decreasing runs of \pi is the set of weak deficiency values of \chi(\pi).