Identifier
- St001513: Permutations ⟶ ℤ
Values
[1] => 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 0
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 0
[2,4,3,1] => 0
[3,1,2,4] => 0
[3,1,4,2] => 0
[3,2,1,4] => 0
[3,2,4,1] => 0
[3,4,1,2] => 0
[3,4,2,1] => 0
[4,1,2,3] => 0
[4,1,3,2] => 0
[4,2,1,3] => 0
[4,2,3,1] => 0
[4,3,1,2] => 1
[4,3,2,1] => 1
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 0
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 0
[1,3,5,4,2] => 0
[1,4,2,3,5] => 0
[1,4,2,5,3] => 0
[1,4,3,2,5] => 0
[1,4,3,5,2] => 0
[1,4,5,2,3] => 0
[1,4,5,3,2] => 0
[1,5,2,3,4] => 0
[1,5,2,4,3] => 0
[1,5,3,2,4] => 0
[1,5,3,4,2] => 0
[1,5,4,2,3] => 1
[1,5,4,3,2] => 1
[2,1,3,4,5] => 0
[2,1,3,5,4] => 0
[2,1,4,3,5] => 0
[2,1,4,5,3] => 0
[2,1,5,3,4] => 0
[2,1,5,4,3] => 0
[2,3,1,4,5] => 0
[2,3,1,5,4] => 0
[2,3,4,1,5] => 0
[2,3,4,5,1] => 0
[2,3,5,1,4] => 0
[2,3,5,4,1] => 0
[2,4,1,3,5] => 0
[2,4,1,5,3] => 0
[2,4,3,1,5] => 0
[2,4,3,5,1] => 0
[2,4,5,1,3] => 0
[2,4,5,3,1] => 0
[2,5,1,3,4] => 0
[2,5,1,4,3] => 0
[2,5,3,1,4] => 0
[2,5,3,4,1] => 0
[2,5,4,1,3] => 1
[2,5,4,3,1] => 1
[3,1,2,4,5] => 0
[3,1,2,5,4] => 0
[3,1,4,2,5] => 0
[3,1,4,5,2] => 0
[3,1,5,2,4] => 0
[3,1,5,4,2] => 0
[3,2,1,4,5] => 0
[3,2,1,5,4] => 0
[3,2,4,1,5] => 0
[3,2,4,5,1] => 0
[3,2,5,1,4] => 0
[3,2,5,4,1] => 0
[3,4,1,2,5] => 0
[3,4,1,5,2] => 0
[3,4,2,1,5] => 0
[3,4,2,5,1] => 0
[3,4,5,1,2] => 0
[3,4,5,2,1] => 0
[3,5,1,2,4] => 0
[3,5,1,4,2] => 0
>>> Load all 1200 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of nested exceedences of a permutation.
For a permutation $\pi$, this is the number of pairs $i,j$ such that $i < j < \pi(j) < \pi(i)$. For exceedences, see St000155The number of exceedances (also excedences) of a permutation..
For a permutation $\pi$, this is the number of pairs $i,j$ such that $i < j < \pi(j) < \pi(i)$. For exceedences, see St000155The number of exceedances (also excedences) of a permutation..
References
[1] Blitvić, N., Steingrímsson, E. Permutations, moments, measures arXiv:2001.00280
[2] Corteel, S. Crossings and alignments of permutations MathSciNet:2290808
[2] Corteel, S. Crossings and alignments of permutations MathSciNet:2290808
Code
def statistic(pi):
return sum(1 for i in range(1, len(pi)) for j in range(i+1, len(pi)+1) if i < j < pi(j) < pi(i))
Created
Jan 03, 2020 at 09:57 by Martin Rubey
Updated
Jan 04, 2020 at 14:29 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!