Identifier
-
Mp00275:
Graphs
—to edge-partition of connected components⟶
Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001515: Dyck paths ⟶ ℤ
Values
([(0,1)],2) => [1] => [1,0,1,0] => 1
([(1,2)],3) => [1] => [1,0,1,0] => 1
([(0,2),(1,2)],3) => [2] => [1,1,0,0,1,0] => 2
([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 3
([(2,3)],4) => [1] => [1,0,1,0] => 1
([(1,3),(2,3)],4) => [2] => [1,1,0,0,1,0] => 2
([(0,3),(1,3),(2,3)],4) => [3] => [1,1,1,0,0,0,1,0] => 3
([(0,3),(1,2)],4) => [1,1] => [1,0,1,1,0,0] => 2
([(0,3),(1,2),(2,3)],4) => [3] => [1,1,1,0,0,0,1,0] => 3
([(1,2),(1,3),(2,3)],4) => [3] => [1,1,1,0,0,0,1,0] => 3
([(0,3),(1,2),(1,3),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(3,4)],5) => [1] => [1,0,1,0] => 1
([(2,4),(3,4)],5) => [2] => [1,1,0,0,1,0] => 2
([(1,4),(2,4),(3,4)],5) => [3] => [1,1,1,0,0,0,1,0] => 3
([(0,4),(1,4),(2,4),(3,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(1,4),(2,3)],5) => [1,1] => [1,0,1,1,0,0] => 2
([(1,4),(2,3),(3,4)],5) => [3] => [1,1,1,0,0,0,1,0] => 3
([(0,1),(2,4),(3,4)],5) => [2,1] => [1,0,1,0,1,0] => 2
([(2,3),(2,4),(3,4)],5) => [3] => [1,1,1,0,0,0,1,0] => 3
([(0,4),(1,4),(2,3),(3,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(1,4),(2,3),(2,4),(3,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(0,4),(1,3),(2,3),(2,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [1,1,0,1,0,0,1,0] => 3
([(4,5)],6) => [1] => [1,0,1,0] => 1
([(3,5),(4,5)],6) => [2] => [1,1,0,0,1,0] => 2
([(2,5),(3,5),(4,5)],6) => [3] => [1,1,1,0,0,0,1,0] => 3
([(1,5),(2,5),(3,5),(4,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(2,5),(3,4)],6) => [1,1] => [1,0,1,1,0,0] => 2
([(2,5),(3,4),(4,5)],6) => [3] => [1,1,1,0,0,0,1,0] => 3
([(1,2),(3,5),(4,5)],6) => [2,1] => [1,0,1,0,1,0] => 2
([(3,4),(3,5),(4,5)],6) => [3] => [1,1,1,0,0,0,1,0] => 3
([(1,5),(2,5),(3,4),(4,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(0,1),(2,5),(3,5),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => 3
([(2,5),(3,4),(3,5),(4,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2] => [1,1,0,0,1,1,0,0] => 3
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => 3
([(1,5),(2,4),(3,4),(3,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(0,1),(2,5),(3,4),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => 3
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 4
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,2] => [1,1,0,0,1,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => 4
([(5,6)],7) => [1] => [1,0,1,0] => 1
([(4,6),(5,6)],7) => [2] => [1,1,0,0,1,0] => 2
([(3,6),(4,6),(5,6)],7) => [3] => [1,1,1,0,0,0,1,0] => 3
([(2,6),(3,6),(4,6),(5,6)],7) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(3,6),(4,5)],7) => [1,1] => [1,0,1,1,0,0] => 2
([(3,6),(4,5),(5,6)],7) => [3] => [1,1,1,0,0,0,1,0] => 3
([(2,3),(4,6),(5,6)],7) => [2,1] => [1,0,1,0,1,0] => 2
([(4,5),(4,6),(5,6)],7) => [3] => [1,1,1,0,0,0,1,0] => 3
([(2,6),(3,6),(4,5),(5,6)],7) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(1,2),(3,6),(4,6),(5,6)],7) => [3,1] => [1,1,0,1,0,0,1,0] => 3
([(3,6),(4,5),(4,6),(5,6)],7) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 4
([(3,5),(3,6),(4,5),(4,6)],7) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(1,6),(2,6),(3,5),(4,5)],7) => [2,2] => [1,1,0,0,1,1,0,0] => 3
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [3,2] => [1,1,0,0,1,0,1,0] => 3
([(1,6),(2,5),(3,4)],7) => [1,1,1] => [1,0,1,1,1,0,0,0] => 3
([(2,6),(3,5),(4,5),(4,6)],7) => [4] => [1,1,1,1,0,0,0,0,1,0] => 4
([(1,2),(3,6),(4,5),(5,6)],7) => [3,1] => [1,1,0,1,0,0,1,0] => 3
([(0,3),(1,2),(4,6),(5,6)],7) => [2,1,1] => [1,0,1,1,0,1,0,0] => 3
([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => [1,1,0,1,0,0,1,0] => 3
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 4
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 4
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 4
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [3,2] => [1,1,0,0,1,0,1,0] => 3
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,2] => [1,1,0,0,1,0,1,0] => 3
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 4
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => 4
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 4
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 4
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,1,0,0,1,0] => 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => 4
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => 4
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [1,1,1,0,0,0,1,0,1,0] => 4
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => [4,3] => [1,1,1,0,0,0,1,0,1,0] => 4
search for individual values
searching the database for the individual values of this statistic
Description
The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule).
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
to edge-partition of connected components
Description
Sends a graph to the partition recording the number of edges in its connected components.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!