Values
=>
Cc0020;cc-rep
([],1)=>1
([],2)=>1
([(0,1)],2)=>1
([],3)=>1
([(1,2)],3)=>1
([(0,2),(1,2)],3)=>1
([(0,1),(0,2),(1,2)],3)=>1
([],4)=>1
([(2,3)],4)=>1
([(1,3),(2,3)],4)=>1
([(0,3),(1,3),(2,3)],4)=>1
([(0,3),(1,2)],4)=>1
([(0,3),(1,2),(2,3)],4)=>1
([(1,2),(1,3),(2,3)],4)=>1
([(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,2),(0,3),(1,2),(1,3)],4)=>1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>1
([],5)=>1
([(3,4)],5)=>1
([(2,4),(3,4)],5)=>1
([(1,4),(2,4),(3,4)],5)=>1
([(0,4),(1,4),(2,4),(3,4)],5)=>2
([(1,4),(2,3)],5)=>1
([(1,4),(2,3),(3,4)],5)=>1
([(0,1),(2,4),(3,4)],5)=>1
([(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,4),(2,3),(3,4)],5)=>1
([(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(1,3),(1,4),(2,3),(2,4)],5)=>2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,3),(2,3),(2,4)],5)=>1
([(0,1),(2,3),(2,4),(3,4)],5)=>1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>1
([],6)=>1
([(4,5)],6)=>1
([(3,5),(4,5)],6)=>1
([(2,5),(3,5),(4,5)],6)=>1
([(1,5),(2,5),(3,5),(4,5)],6)=>2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>1
([(2,5),(3,4)],6)=>1
([(2,5),(3,4),(4,5)],6)=>1
([(1,2),(3,5),(4,5)],6)=>1
([(3,4),(3,5),(4,5)],6)=>1
([(1,5),(2,5),(3,4),(4,5)],6)=>1
([(0,1),(2,5),(3,5),(4,5)],6)=>2
([(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,5),(1,5),(2,4),(3,4)],6)=>1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3)],6)=>1
([(1,5),(2,4),(3,4),(3,5)],6)=>2
([(0,1),(2,5),(3,4),(4,5)],6)=>1
([(1,2),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>1
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>1
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of graphs with the same ordinary spectrum as the given graph.
Code
@cached_function def spectra(n): return {G.canonical_label().copy(immutable=True): sorted(G.adjacency_matrix().eigenvalues()) for G in graphs(n)} def statistic(G): d = spectra(G.num_verts()) s = d[G.canonical_label().copy(immutable=True)] return sum(1 for _, s_H in d.items() if s == s_H)
Created
Feb 14, 2020 at 16:27 by Martin Rubey
Updated
Oct 26, 2021 at 16:13 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!