Identifier
- St001526: Dyck paths ⟶ ℤ
Values
[1,0] => 1
[1,0,1,0] => 2
[1,1,0,0] => 2
[1,0,1,0,1,0] => 2
[1,0,1,1,0,0] => 2
[1,1,0,0,1,0] => 2
[1,1,0,1,0,0] => 3
[1,1,1,0,0,0] => 3
[1,0,1,0,1,0,1,0] => 2
[1,0,1,0,1,1,0,0] => 2
[1,0,1,1,0,0,1,0] => 2
[1,0,1,1,0,1,0,0] => 3
[1,0,1,1,1,0,0,0] => 3
[1,1,0,0,1,0,1,0] => 2
[1,1,0,0,1,1,0,0] => 2
[1,1,0,1,0,0,1,0] => 3
[1,1,0,1,0,1,0,0] => 3
[1,1,0,1,1,0,0,0] => 3
[1,1,1,0,0,0,1,0] => 3
[1,1,1,0,0,1,0,0] => 3
[1,1,1,0,1,0,0,0] => 4
[1,1,1,1,0,0,0,0] => 4
[1,0,1,0,1,0,1,0,1,0] => 2
[1,0,1,0,1,0,1,1,0,0] => 2
[1,0,1,0,1,1,0,0,1,0] => 2
[1,0,1,0,1,1,0,1,0,0] => 3
[1,0,1,0,1,1,1,0,0,0] => 3
[1,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,0,0,1,0] => 3
[1,0,1,1,0,1,0,1,0,0] => 3
[1,0,1,1,0,1,1,0,0,0] => 3
[1,0,1,1,1,0,0,0,1,0] => 3
[1,0,1,1,1,0,0,1,0,0] => 3
[1,0,1,1,1,0,1,0,0,0] => 4
[1,0,1,1,1,1,0,0,0,0] => 4
[1,1,0,0,1,0,1,0,1,0] => 2
[1,1,0,0,1,0,1,1,0,0] => 2
[1,1,0,0,1,1,0,0,1,0] => 2
[1,1,0,0,1,1,0,1,0,0] => 3
[1,1,0,0,1,1,1,0,0,0] => 3
[1,1,0,1,0,0,1,0,1,0] => 3
[1,1,0,1,0,0,1,1,0,0] => 3
[1,1,0,1,0,1,0,0,1,0] => 3
[1,1,0,1,0,1,0,1,0,0] => 3
[1,1,0,1,0,1,1,0,0,0] => 3
[1,1,0,1,1,0,0,0,1,0] => 3
[1,1,0,1,1,0,0,1,0,0] => 3
[1,1,0,1,1,0,1,0,0,0] => 4
[1,1,0,1,1,1,0,0,0,0] => 4
[1,1,1,0,0,0,1,0,1,0] => 3
[1,1,1,0,0,0,1,1,0,0] => 3
[1,1,1,0,0,1,0,0,1,0] => 3
[1,1,1,0,0,1,0,1,0,0] => 3
[1,1,1,0,0,1,1,0,0,0] => 3
[1,1,1,0,1,0,0,0,1,0] => 4
[1,1,1,0,1,0,0,1,0,0] => 4
[1,1,1,0,1,0,1,0,0,0] => 4
[1,1,1,0,1,1,0,0,0,0] => 4
[1,1,1,1,0,0,0,0,1,0] => 4
[1,1,1,1,0,0,0,1,0,0] => 4
[1,1,1,1,0,0,1,0,0,0] => 4
[1,1,1,1,0,1,0,0,0,0] => 5
[1,1,1,1,1,0,0,0,0,0] => 5
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path.
Code
DeclareOperation("loewylengthtauA",[IsList]);
InstallMethod(loewylengthtauA, "for a representation of a quiver", [IsList],0,function(LIST)
local M,N,R1,U1,R2,U2,A,L,i,j,W,d,WW,n,l,LL,C,T;
A:=LIST[1];
C:=AlgebraAsModuleOverEnvelopingAlgebra(A);
T:=DTr(C);
return(LoewyLength(T));
end);
Created
Mar 11, 2020 at 23:09 by Rene Marczinzik
Updated
Mar 11, 2020 at 23:09 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!