edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[1]=>1 [2]=>5 [1,1]=>4 [3]=>37 [2,1]=>55 [1,1,1]=>23 [4]=>405 [3,1]=>587 [2,2]=>284 [2,1,1]=>712 [1,1,1,1]=>206 [5]=>5251 [4,1]=>7501 [3,2]=>7151 [3,1,1]=>8949 [2,2,1]=>8719 [2,1,1,1]=>10103 [1,1,1,1,1]=>2247
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of monomials in the expansion of the nabla operator applied to the power-sum symmetric function indexed by the partition.
In other words, it is the sum of the coefficients in
$$(-1)^{|\lambda|-\ell(\lambda)}\nabla p_\lambda \vert_{q=1,t=1},$$
when expanded in the monomial basis.
Here, $\nabla$ is the linear operator on symmetric functions
where the modified Macdonald polynomials are eigenvectors. See the Sage documentation for definition and references http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/sf/sfa.html
References
[1] Bergeron, F., Garsia, A. M., Haiman, M., Tesler, G. Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions DOI:10.4310/maa.1999.v6.n3.a7
Created
Apr 13, 2020 at 21:26 by Per Alexandersson
Updated
Apr 13, 2020 at 21:26 by Per Alexandersson