Identifier
Values
([],1) => ([],1) => ([],1) => 1
([],2) => ([],1) => ([],1) => 1
([(0,1)],2) => ([(0,1)],2) => ([(0,1)],2) => 1
([],3) => ([],1) => ([],1) => 1
([(1,2)],3) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,2),(1,2)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
([],4) => ([],1) => ([],1) => 1
([(2,3)],4) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
([(0,3),(1,2)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
([],5) => ([],1) => ([],1) => 1
([(3,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 1
([(2,4),(3,4)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
([(1,4),(2,3)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
([],6) => ([],1) => ([],1) => 1
([(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 1
([(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
([],7) => ([],1) => ([],1) => 1
([(5,6)],7) => ([(0,1)],2) => ([(0,1)],2) => 1
([(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
([(3,6),(4,5)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
([(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The largest coefficient of the Poincare polynomial of the poset cone.
For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$.
Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$.
This statistic records its largest coefficient.
Map
to poset
Description
Return the poset corresponding to the lattice.
Map
connected vertex partitions
Description
Sends a graph to the lattice of its connected vertex partitions.
A connected vertex partition of a graph $G = (V,E)$ is a set partition of $V$ such that each part induced a connected subgraph of $G$. The connected vertex partitions of $G$ form a lattice under refinement. If $G = K_n$ is a complete graph, the resulting lattice is the lattice of set partitions on $n$ elements.
In the language of matroid theory, this map sends a graph to the lattice of flats of its graphic matroid. The resulting lattice is a geometric lattice, i.e. it is atomistic and semimodular.