Processing math: 100%

edit this statistic or download as text // json
Identifier
Values
([],1) => 1
([],2) => 0
([(0,1)],2) => 1
([],3) => 0
([(1,2)],3) => -1
([(0,1),(0,2)],3) => 0
([(0,2),(2,1)],3) => 1
([(0,2),(1,2)],3) => 0
([],4) => 0
([(2,3)],4) => 2
([(1,2),(1,3)],4) => 0
([(0,1),(0,2),(0,3)],4) => 0
([(0,2),(0,3),(3,1)],4) => -1
([(0,1),(0,2),(1,3),(2,3)],4) => 0
([(1,2),(2,3)],4) => -2
([(0,3),(3,1),(3,2)],4) => 0
([(1,3),(2,3)],4) => 0
([(0,3),(1,3),(3,2)],4) => 0
([(0,3),(1,3),(2,3)],4) => 0
([(0,3),(1,2)],4) => -2
([(0,3),(1,2),(1,3)],4) => -1
([(0,2),(0,3),(1,2),(1,3)],4) => 0
([(0,3),(2,1),(3,2)],4) => 1
([(0,3),(1,2),(2,3)],4) => -1
([],5) => 0
([(3,4)],5) => -6
([(2,3),(2,4)],5) => 0
([(1,2),(1,3),(1,4)],5) => 0
([(0,1),(0,2),(0,3),(0,4)],5) => 0
([(0,2),(0,3),(0,4),(4,1)],5) => 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5) => 0
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 0
([(1,3),(1,4),(4,2)],5) => 3
([(0,3),(0,4),(4,1),(4,2)],5) => 0
([(1,2),(1,3),(2,4),(3,4)],5) => 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 0
([(0,3),(0,4),(3,2),(4,1)],5) => -2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => -1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => 0
([(2,3),(3,4)],5) => 6
([(1,4),(4,2),(4,3)],5) => 0
([(0,4),(4,1),(4,2),(4,3)],5) => 0
([(2,4),(3,4)],5) => 0
([(1,4),(2,4),(4,3)],5) => 0
([(0,4),(1,4),(4,2),(4,3)],5) => 0
([(1,4),(2,4),(3,4)],5) => 0
([(0,4),(1,4),(2,4),(4,3)],5) => 0
([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(0,4),(1,4),(2,3)],5) => 2
([(0,4),(1,3),(2,3),(2,4)],5) => 0
([(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 0
([(0,4),(1,4),(2,3),(4,2)],5) => 0
([(0,4),(1,3),(2,3),(3,4)],5) => 0
([(0,4),(1,4),(2,3),(2,4)],5) => 2
([(0,4),(1,4),(2,3),(3,4)],5) => 2
([(1,4),(2,3)],5) => 6
([(1,4),(2,3),(2,4)],5) => 3
([(0,4),(1,2),(1,4),(2,3)],5) => -1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => -1
([(1,3),(1,4),(2,3),(2,4)],5) => 0
([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => 0
([(0,4),(1,2),(1,4),(4,3)],5) => -1
([(0,4),(1,2),(1,3)],5) => 2
([(0,4),(1,2),(1,3),(1,4)],5) => 2
([(0,2),(0,4),(3,1),(4,3)],5) => -2
([(0,4),(1,2),(1,3),(3,4)],5) => 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => -1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(0,3),(0,4),(1,2),(1,3),(1,4)],5) => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5) => 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => 0
([(0,3),(1,2),(1,4),(3,4)],5) => -1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => 0
([(1,4),(3,2),(4,3)],5) => -3
([(0,3),(3,4),(4,1),(4,2)],5) => 0
([(1,4),(2,3),(3,4)],5) => 3
([(0,4),(1,2),(2,4),(4,3)],5) => -1
([(0,3),(1,4),(4,2)],5) => -2
([(0,4),(3,2),(4,1),(4,3)],5) => -1
([(0,4),(1,2),(2,3),(2,4)],5) => -1
([(0,4),(2,3),(3,1),(4,2)],5) => 1
([(0,3),(1,2),(2,4),(3,4)],5) => -2
([(0,4),(1,2),(2,3),(3,4)],5) => -2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 0
([],6) => 0
([(4,5)],6) => 24
([(3,4),(3,5)],6) => 0
([(2,3),(2,4),(2,5)],6) => 0
([(1,2),(1,3),(1,4),(1,5)],6) => 0
([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 0
([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => -6
([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6) => 0
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6) => 0
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 0
([(1,3),(1,4),(1,5),(5,2)],6) => -8
([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => 0
([(1,2),(1,3),(1,4),(3,5),(4,5)],6) => 0
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 0
>>> Load all 1200 entries. <<<
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6) => 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6) => 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6) => 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 0
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6) => 0
([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 6
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6) => 3
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(2,3),(2,4),(4,5)],6) => -12
([(1,4),(1,5),(5,2),(5,3)],6) => 0
([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => 0
([(2,3),(2,4),(3,5),(4,5)],6) => 0
([(1,2),(1,3),(2,5),(3,5),(5,4)],6) => 0
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => 0
([(1,4),(1,5),(4,3),(5,2)],6) => 8
([(1,3),(1,4),(3,5),(4,2),(4,5)],6) => 4
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6) => 0
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 0
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6) => -1
([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => 2
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6) => 2
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => 0
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6) => 0
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 0
([(3,4),(4,5)],6) => -24
([(2,3),(3,4),(3,5)],6) => 0
([(1,5),(5,2),(5,3),(5,4)],6) => 0
([(0,5),(5,1),(5,2),(5,3),(5,4)],6) => 0
([(2,3),(3,5),(5,4)],6) => 12
([(1,4),(4,5),(5,2),(5,3)],6) => 0
([(0,4),(4,5),(5,1),(5,2),(5,3)],6) => 0
([(3,5),(4,5)],6) => 0
([(2,5),(3,5),(5,4)],6) => 0
([(1,5),(2,5),(5,3),(5,4)],6) => 0
([(0,5),(1,5),(5,2),(5,3),(5,4)],6) => 0
([(2,5),(3,5),(4,5)],6) => 0
([(1,5),(2,5),(3,5),(5,4)],6) => 0
([(0,5),(1,5),(2,5),(5,3),(5,4)],6) => 0
([(1,5),(2,5),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,5),(3,4)],6) => -6
([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => 0
([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => 0
([(0,5),(1,5),(2,5),(3,4),(3,5)],6) => -6
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => -6
([(1,5),(2,5),(3,4)],6) => -8
([(1,5),(2,4),(3,4),(3,5)],6) => 0
([(0,5),(1,4),(2,4),(2,5),(5,3)],6) => 0
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6) => 0
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6) => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6) => 0
([(1,5),(2,5),(3,4),(5,3)],6) => 0
([(1,5),(2,4),(3,4),(4,5)],6) => 0
([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 0
([(0,5),(1,5),(2,3),(5,4)],6) => 2
([(0,5),(1,5),(4,2),(5,3),(5,4)],6) => 0
([(0,5),(1,5),(2,4),(5,3),(5,4)],6) => 0
([(1,5),(2,5),(3,4),(3,5)],6) => -8
([(0,5),(1,5),(2,3),(2,5),(5,4)],6) => 2
([(0,5),(1,5),(2,3),(2,5),(3,4)],6) => 4
([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6) => 2
([(0,5),(1,5),(2,3),(2,4)],6) => -4
([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => 0
([(0,4),(1,4),(2,3),(2,5),(4,5)],6) => 2
([(0,3),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,5),(2,3),(2,4),(2,5)],6) => -4
([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => 5
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6) => 0
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => -2
([(0,5),(1,5),(2,3),(2,4),(4,5)],6) => -2
([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6) => 3
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(1,5),(2,5),(3,4),(4,5)],6) => -8
([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 2
([(0,5),(1,5),(2,3),(3,4)],6) => 4
([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 0
([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 2
([(0,5),(1,4),(3,5),(4,2),(4,3)],6) => 2
([(0,4),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => 0
([(0,5),(1,5),(2,3),(3,4),(3,5)],6) => 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 6
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => 0
([(0,5),(1,5),(2,4),(3,4)],6) => 0
([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => 0
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 0
([(2,5),(3,4)],6) => -24
([(2,5),(3,4),(3,5)],6) => -12
([(1,5),(2,3),(2,5),(3,4)],6) => 4
([(0,5),(1,4),(1,5),(4,2),(4,3)],6) => 2
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6) => 0
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6) => 0
([(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 4
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => -1
([(0,5),(1,4),(1,5),(4,2),(5,3)],6) => 0
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6) => 0
([(2,4),(2,5),(3,4),(3,5)],6) => 0
([(1,4),(1,5),(2,4),(2,5),(5,3)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(5,2),(5,3)],6) => 0
([(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6) => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(4,5)],6) => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,5)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6) => 0
([(1,5),(2,3),(2,5),(5,4)],6) => 4
([(0,5),(1,2),(1,5),(5,3),(5,4)],6) => 0
([(1,5),(2,3),(2,4)],6) => -8
([(1,5),(2,3),(2,4),(2,5)],6) => -8
([(0,5),(1,3),(1,4),(1,5),(4,2)],6) => 4
([(0,4),(1,2),(1,3),(1,4),(3,5),(4,5)],6) => 3
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => 2
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,2),(1,3),(1,5),(5,4)],6) => 4
([(0,5),(1,2),(1,3),(1,4)],6) => -6
([(0,5),(1,2),(1,3),(1,4),(1,5)],6) => -6
([(0,2),(0,3),(0,5),(4,1),(5,4)],6) => 6
([(0,5),(1,2),(1,3),(1,4),(4,5)],6) => -2
([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6) => 3
([(0,5),(1,2),(1,3),(1,4),(3,5),(4,5)],6) => 0
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 2
([(0,5),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 0
([(0,4),(1,2),(1,3),(1,5),(4,5)],6) => 4
([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6) => 0
([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 0
([(1,3),(1,5),(4,2),(5,4)],6) => 8
([(0,3),(0,4),(4,5),(5,1),(5,2)],6) => 0
([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => -2
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => -1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6) => -1
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => 0
([(1,5),(2,3),(2,4),(4,5)],6) => -4
([(0,5),(1,2),(1,3),(3,5),(5,4)],6) => 2
([(1,3),(1,4),(2,5),(3,5),(4,2)],6) => 4
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => -1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(0,5),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => 0
([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => 4
([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => 1
([(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6) => 1
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6) => 1
([(0,5),(1,3),(1,4),(3,5),(4,2),(4,5)],6) => 3
([(0,4),(1,3),(1,5),(5,2)],6) => 5
([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => 3
([(0,5),(1,3),(1,4),(4,2),(4,5)],6) => 3
([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => 4
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => -2
([(0,4),(1,2),(1,3),(2,5),(3,5)],6) => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => 0
([(1,4),(1,5),(2,3),(2,5)],6) => 0
([(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 0
([(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6) => 1
([(0,4),(0,5),(1,2),(1,4),(1,5),(4,3),(5,3)],6) => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6) => 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(4,2),(5,2)],6) => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3)],6) => 0
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(5,3)],6) => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(5,2)],6) => 2
([(1,4),(1,5),(2,3),(2,4),(3,5)],6) => 0
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6) => 1
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6) => 1
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => 0
([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => 1
([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6) => 0
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6) => 1
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5)],6) => 2
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6) => 0
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(1,5)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6) => 0
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 0
([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6) => 0
([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6) => 1
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => 2
([(0,4),(0,5),(1,2),(1,3),(3,4),(3,5)],6) => 0
([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6) => 0
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6) => -1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,5)],6) => 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6) => 2
([(1,4),(2,3),(2,5),(4,5)],6) => 4
([(0,4),(1,3),(1,5),(4,5),(5,2)],6) => 0
([(1,4),(1,5),(2,3),(3,4),(3,5)],6) => 0
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6) => 1
([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 0
([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => 1
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => -1
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6) => 1
([(0,5),(1,3),(1,4),(5,2)],6) => 4
([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => -3
([(0,5),(4,2),(4,3),(5,1),(5,4)],6) => 0
([(0,4),(1,3),(1,5),(4,2),(4,5)],6) => 0
([(0,4),(0,5),(1,2),(2,3),(2,4),(2,5)],6) => 0
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6) => 1
([(2,5),(3,4),(4,5)],6) => -12
([(1,5),(2,3),(3,5),(5,4)],6) => 4
([(0,5),(1,2),(2,5),(5,3),(5,4)],6) => 0
([(1,3),(2,4),(4,5)],6) => 8
([(1,5),(4,3),(5,2),(5,4)],6) => 4
([(1,5),(2,3),(3,4),(3,5)],6) => 4
([(0,5),(1,4),(4,2),(4,5),(5,3)],6) => 0
([(0,4),(1,5),(5,2),(5,3)],6) => 2
([(0,5),(4,3),(5,1),(5,2),(5,4)],6) => 2
([(0,5),(1,4),(4,2),(4,3),(4,5)],6) => 2
([(1,5),(3,4),(4,2),(5,3)],6) => -4
([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => 0
([(1,4),(2,3),(3,5),(4,5)],6) => 8
([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => -2
([(0,5),(1,4),(4,2),(5,3)],6) => 0
([(0,5),(3,4),(4,2),(5,1),(5,3)],6) => -2
([(0,3),(1,4),(3,5),(4,2),(4,5)],6) => 0
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(1,5),(2,3),(3,4),(4,5)],6) => 8
([(1,4),(2,5),(3,5),(4,2),(4,3)],6) => 0
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => -2
([(0,5),(1,4),(2,3)],6) => 6
([(0,5),(1,3),(2,4),(2,5)],6) => 3
([(0,5),(1,4),(2,3),(2,4),(2,5)],6) => 2
([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => 0
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => -1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6) => -1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 3
([(0,5),(1,3),(1,5),(4,2),(5,4)],6) => -1
([(0,5),(1,4),(2,3),(2,4),(4,5)],6) => 3
([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => 1
([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5)],6) => 0
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => 1
([(0,5),(1,4),(1,5),(2,3),(2,5)],6) => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 1
([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => 1
([(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6) => 1
([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => 0
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6) => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => 0
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6) => -1
([(0,5),(1,4),(2,3),(2,5),(4,5)],6) => 4
([(0,5),(1,3),(4,2),(5,4)],6) => -1
([(0,5),(3,2),(4,1),(5,3),(5,4)],6) => -2
([(0,5),(1,4),(3,2),(4,3),(4,5)],6) => 0
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6) => -1
([(0,4),(3,2),(4,5),(5,1),(5,3)],6) => -1
([(0,5),(1,3),(3,4),(4,2),(4,5)],6) => -1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
([(0,5),(1,3),(2,4),(4,5)],6) => 5
([(0,5),(1,4),(2,3),(3,4),(3,5)],6) => 2
([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => -1
([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 3
([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => -3
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => -2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => -1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 6
([],7) => 0
([(5,6)],7) => -120
([(4,5),(4,6)],7) => 0
([(3,4),(3,5),(3,6)],7) => 0
([(2,3),(2,4),(2,5),(2,6)],7) => 0
([(1,2),(1,3),(1,4),(1,5),(1,6)],7) => 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6)],7) => 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(6,1)],7) => 24
([(0,1),(0,2),(0,3),(0,4),(0,5),(4,6),(5,6)],7) => 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,6)],7) => 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6)],7) => 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 0
([(1,3),(1,4),(1,5),(1,6),(6,2)],7) => 30
([(0,3),(0,4),(0,5),(0,6),(6,1),(6,2)],7) => 0
([(1,2),(1,3),(1,4),(1,5),(4,6),(5,6)],7) => 0
([(1,2),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6)],7) => 0
([(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7) => 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1)],7) => -6
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1),(5,6)],7) => -6
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 0
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1)],7) => 0
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1)],7) => -8
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6)],7) => 0
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,1),(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6)],7) => -8
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5)],7) => 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(4,6)],7) => 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 0
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6)],7) => 0
([(0,2),(0,3),(0,4),(0,5),(4,6),(5,6),(6,1)],7) => 0
([(0,3),(0,4),(0,5),(0,6),(5,2),(6,1)],7) => -24
([(0,2),(0,3),(0,4),(0,5),(4,6),(5,1),(5,6)],7) => -12
([(0,1),(0,2),(0,3),(0,4),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(2,4),(2,5),(2,6),(6,3)],7) => 40
([(1,4),(1,5),(1,6),(6,2),(6,3)],7) => 0
([(0,4),(0,5),(0,6),(6,1),(6,2),(6,3)],7) => 0
([(2,3),(2,4),(2,5),(4,6),(5,6)],7) => 0
([(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => 0
([(1,2),(1,3),(1,4),(2,6),(3,6),(4,6),(6,5)],7) => 0
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7) => 0
([(1,3),(1,4),(1,5),(3,6),(4,6),(5,2)],7) => -10
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(4,6)],7) => 0
([(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7) => 0
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => 0
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,1)],7) => 0
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 0
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7) => 0
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(6,1)],7) => 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(1,3),(1,4),(1,5),(3,6),(4,6),(5,2),(5,6)],7) => -10
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6),(6,2)],7) => 2
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,2)],7) => -4
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,2),(5,6)],7) => -4
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,6),(5,6)],7) => 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(5,6)],7) => 0
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => 0
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(6,2)],7) => 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,5),(6,1),(6,5)],7) => 0
([(1,2),(1,3),(1,4),(3,6),(4,6),(6,5)],7) => 0
([(0,3),(0,4),(0,5),(4,6),(5,6),(6,1),(6,2)],7) => 0
([(1,4),(1,5),(1,6),(5,3),(6,2)],7) => -30
([(1,3),(1,4),(1,5),(4,6),(5,2),(5,6)],7) => -15
([(1,2),(1,3),(1,4),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,1)],7) => 0
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,6)],7) => 0
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7) => 0
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => 0
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => 0
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,2),(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(6,1)],7) => 0
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7) => 4
([(0,4),(0,5),(0,6),(5,3),(6,1),(6,2)],7) => -8
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,2),(5,6)],7) => -8
([(0,3),(0,4),(0,5),(4,2),(4,6),(5,1),(5,6)],7) => 0
([(0,2),(0,3),(0,4),(3,5),(3,6),(4,1),(4,5),(4,6)],7) => 0
([(0,1),(0,2),(0,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,4),(0,5),(0,6),(4,3),(5,2),(6,1)],7) => 6
([(0,3),(0,4),(0,5),(3,6),(4,2),(5,1),(5,6)],7) => 3
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,1),(4,5),(4,6)],7) => 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7) => 1
([(0,1),(0,2),(0,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)],7) => 0
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7) => 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,6),(3,4),(3,5),(5,6)],7) => 0
([(0,3),(0,4),(0,5),(3,6),(4,2),(4,6),(5,1),(5,6)],7) => 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,1),(4,5),(5,6)],7) => 3
([(3,4),(3,5),(5,6)],7) => 60
([(2,5),(2,6),(6,3),(6,4)],7) => 0
([(1,5),(1,6),(6,2),(6,3),(6,4)],7) => 0
([(0,5),(0,6),(6,1),(6,2),(6,3),(6,4)],7) => 0
([(3,4),(3,5),(4,6),(5,6)],7) => 0
([(2,3),(2,4),(3,6),(4,6),(6,5)],7) => 0
([(1,2),(1,3),(2,6),(3,6),(6,4),(6,5)],7) => 0
([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7) => 0
([(2,5),(2,6),(5,4),(6,3)],7) => -40
([(2,3),(2,4),(3,6),(4,5),(4,6)],7) => -20
([(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(1,3),(1,4),(3,5),(3,6),(4,5),(4,6),(6,2)],7) => 0
([(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(6,1),(6,2)],7) => 0
([(1,2),(1,3),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => 0
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7) => 0
([(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(5,2),(6,1)],7) => 0
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7) => 0
([(0,1),(0,2),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) => 0
([(1,3),(1,5),(3,6),(5,2),(5,6),(6,4)],7) => 5
([(0,4),(0,5),(4,6),(5,1),(5,6),(6,2),(6,3)],7) => 0
([(1,5),(1,6),(5,4),(6,2),(6,3)],7) => -10
([(1,4),(1,5),(4,6),(5,2),(5,3),(5,6)],7) => -10
([(0,4),(0,5),(4,6),(5,1),(5,2),(5,6),(6,3)],7) => 4
([(0,5),(0,6),(5,4),(6,1),(6,2),(6,3)],7) => -6
([(0,4),(0,5),(4,6),(5,1),(5,2),(5,3),(5,6)],7) => -6
([(1,4),(1,5),(4,3),(4,6),(5,2),(5,6)],7) => 0
([(1,3),(1,4),(3,5),(3,6),(4,2),(4,5),(4,6)],7) => 0
([(1,2),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,2),(0,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(6,1)],7) => 0
([(0,1),(0,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3),(6,3)],7) => 0
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => 0
([(0,3),(0,4),(3,5),(3,6),(4,2),(4,5),(4,6),(6,1)],7) => 1
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,4),(0,5),(4,2),(4,6),(5,1),(5,6),(6,3)],7) => 2
([(0,5),(0,6),(5,3),(5,4),(6,1),(6,2)],7) => 0
([(0,4),(0,5),(4,3),(4,6),(5,1),(5,2),(5,6)],7) => 0
([(0,3),(0,4),(3,5),(3,6),(4,1),(4,2),(4,5),(4,6)],7) => 0
([(0,3),(0,4),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6)],7) => 0
([(0,2),(0,3),(2,4),(2,5),(2,6),(3,1),(3,4),(3,5),(3,6)],7) => 0
([(0,1),(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7) => 0
([(2,3),(2,4),(3,5),(4,6),(5,6)],7) => -20
([(1,3),(1,5),(2,6),(3,6),(5,2),(6,4)],7) => 5
([(0,4),(0,5),(1,6),(4,6),(5,1),(6,2),(6,3)],7) => 0
([(4,5),(5,6)],7) => 120
([(3,4),(4,5),(4,6)],7) => 0
([(2,6),(6,3),(6,4),(6,5)],7) => 0
([(1,6),(6,2),(6,3),(6,4),(6,5)],7) => 0
([(0,6),(6,1),(6,2),(6,3),(6,4),(6,5)],7) => 0
([(3,4),(4,6),(6,5)],7) => -60
([(2,5),(5,6),(6,3),(6,4)],7) => 0
([(1,5),(5,6),(6,2),(6,3),(6,4)],7) => 0
([(0,5),(5,6),(6,1),(6,2),(6,3),(6,4)],7) => 0
([(4,6),(5,6)],7) => 0
([(3,6),(4,6),(6,5)],7) => 0
([(2,6),(3,6),(6,4),(6,5)],7) => 0
([(1,6),(2,6),(6,3),(6,4),(6,5)],7) => 0
([(0,6),(1,6),(6,2),(6,3),(6,4),(6,5)],7) => 0
([(3,6),(4,6),(5,6)],7) => 0
([(2,6),(3,6),(4,6),(6,5)],7) => 0
([(1,6),(2,6),(3,6),(6,4),(6,5)],7) => 0
([(0,6),(1,6),(2,6),(6,3),(6,4),(6,5)],7) => 0
([(2,6),(3,6),(4,6),(5,6)],7) => 0
([(1,6),(2,6),(3,6),(4,6),(6,5)],7) => 0
([(0,6),(1,6),(2,6),(3,6),(6,4),(6,5)],7) => 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 0
([(0,6),(1,6),(2,6),(3,6),(4,6),(6,5)],7) => 0
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 0
([(0,6),(1,6),(2,6),(3,6),(4,5)],7) => 24
([(0,6),(1,6),(2,6),(3,6),(4,5),(6,4)],7) => 0
([(0,6),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 0
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6)],7) => 24
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 24
([(1,6),(2,6),(3,6),(4,5)],7) => 30
([(1,6),(2,6),(3,6),(4,5),(6,4)],7) => 0
([(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 0
([(0,6),(1,6),(2,6),(3,4),(6,5)],7) => -6
([(0,6),(1,6),(2,6),(4,5),(6,3),(6,4)],7) => 0
([(0,6),(1,6),(2,6),(3,5),(6,4),(6,5)],7) => 0
([(1,6),(2,6),(3,6),(4,5),(4,6)],7) => 30
([(0,6),(1,6),(2,6),(3,4),(3,6),(6,5)],7) => -6
([(0,6),(1,6),(2,6),(3,4),(3,6),(4,5)],7) => -18
([(0,6),(1,6),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => -6
([(0,6),(1,6),(2,6),(3,4),(3,5)],7) => 12
([(0,6),(1,6),(2,6),(3,4),(3,5),(6,3)],7) => 0
([(0,6),(1,6),(2,6),(3,4),(3,5),(6,5)],7) => -6
([(0,6),(1,6),(2,6),(3,4),(3,5),(6,4),(6,5)],7) => 0
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6)],7) => 12
([(0,6),(1,6),(2,6),(3,4),(3,5),(5,6)],7) => 6
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 30
([(0,6),(1,6),(2,6),(3,4),(4,6),(6,5)],7) => -6
([(0,6),(1,6),(2,6),(3,4),(4,5)],7) => -18
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7) => 0
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,5)],7) => 0
([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7) => -6
([(0,6),(1,6),(2,6),(3,4),(4,5),(4,6)],7) => -18
([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) => 12
([(0,6),(1,4),(2,6),(3,6),(4,5),(5,2),(5,3)],7) => 0
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => 0
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => -24
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => 0
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 0
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(6,4)],7) => 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(6,3),(6,4)],7) => 0
([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6)],7) => 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => 0
([(0,6),(1,5),(2,5),(3,6),(4,6),(5,3),(5,4)],7) => 0
([(0,5),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3),(5,4)],7) => 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 0
([(2,6),(3,6),(4,5)],7) => 40
([(2,6),(3,5),(4,5),(4,6)],7) => 0
([(1,6),(2,5),(3,5),(3,6),(6,4)],7) => 0
([(0,6),(1,5),(2,5),(2,6),(6,3),(6,4)],7) => 0
([(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,5),(1,4),(2,4),(2,5),(4,6),(5,6),(6,3)],7) => 0
([(0,6),(1,5),(2,5),(2,6),(5,3),(6,4)],7) => 0
([(0,6),(1,4),(2,4),(2,6),(4,5),(6,3),(6,5)],7) => 0
([(0,6),(1,5),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) => 0
([(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(5,4)],7) => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4)],7) => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,4)],7) => 0
([(0,6),(1,3),(1,6),(2,3),(2,6),(3,4),(3,5),(6,4),(6,5)],7) => 0
([(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(5,4),(6,3)],7) => 0
([(0,6),(1,4),(1,6),(2,4),(2,6),(4,5),(6,3),(6,5)],7) => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(6,3),(6,4)],7) => 0
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(5,4),(6,3)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(5,4),(6,3),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(6,3)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(4,3),(5,4),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(5,4),(6,3)],7) => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(5,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6)],7) => 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(6,3),(6,4)],7) => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4)],7) => -2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(5,3)],7) => 0
([(0,6),(1,4),(1,6),(2,4),(2,6),(4,5),(5,3),(6,5)],7) => 0
([(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(4,3),(6,5)],7) => 0
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => 0
([(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(4,5),(6,3)],7) => 0
([(0,6),(1,5),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(6,3)],7) => 0
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(6,5)],7) => 0
([(0,5),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6)],7) => -2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(6,4)],7) => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => -2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6)],7) => -2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => -2
([(0,5),(1,5),(1,6),(2,5),(2,6),(3,4),(4,6)],7) => -2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6)],7) => -2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,6)],7) => -2
([(0,6),(1,5),(2,5),(2,6),(3,4)],7) => -4
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6)],7) => 0
([(0,6),(1,5),(2,5),(2,6),(3,4),(6,3)],7) => 0
([(0,6),(1,4),(2,5),(3,4),(3,5),(5,6)],7) => 0
([(0,5),(1,4),(2,4),(2,5),(3,6),(4,6),(5,3)],7) => 0
([(0,6),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6)],7) => -4
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)],7) => 0
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,6),(1,5),(1,6),(2,4),(3,4),(3,6),(4,5)],7) => 0
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -4
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => -4
([(0,6),(1,5),(2,5),(2,6),(3,4),(4,6)],7) => -4
([(0,6),(1,5),(2,5),(2,6),(3,4),(4,5),(4,6)],7) => -4
([(2,6),(3,6),(4,5),(6,4)],7) => 0
([(2,6),(3,5),(4,5),(5,6)],7) => 0
([(1,6),(2,5),(3,5),(5,6),(6,4)],7) => 0
([(0,6),(1,5),(2,5),(5,6),(6,3),(6,4)],7) => 0
([(1,6),(2,6),(3,4),(6,5)],7) => -10
([(1,6),(2,6),(4,5),(6,3),(6,4)],7) => 0
([(1,6),(2,6),(3,5),(6,4),(6,5)],7) => 0
([(0,6),(1,5),(2,5),(5,3),(5,6),(6,4)],7) => 0
([(0,6),(1,6),(2,3),(6,4),(6,5)],7) => 0
([(0,6),(1,6),(5,2),(6,3),(6,4),(6,5)],7) => 0
([(0,6),(1,6),(2,5),(6,3),(6,4),(6,5)],7) => 0
([(2,6),(3,6),(4,5),(4,6)],7) => 40
([(1,6),(2,6),(3,4),(3,6),(6,5)],7) => -10
([(0,6),(1,6),(2,3),(2,6),(6,4),(6,5)],7) => 0
([(1,6),(2,6),(3,4),(3,6),(4,5)],7) => -20
([(1,6),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => -10
([(0,6),(1,6),(2,3),(2,6),(3,5),(6,4)],7) => 2
([(0,6),(1,6),(2,4),(2,6),(4,5),(6,3),(6,5)],7) => 0
([(0,6),(1,6),(2,3),(2,6),(3,4),(3,5)],7) => -8
([(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(6,5)],7) => 2
([(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(6,4),(6,5)],7) => 0
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4)],7) => 4
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4),(6,5)],7) => 2
([(0,6),(1,6),(2,3),(2,6),(3,4),(4,5),(6,5)],7) => 4
([(1,6),(2,6),(3,4),(3,5)],7) => 20
([(1,6),(2,6),(3,4),(3,5),(6,3)],7) => 0
([(1,5),(2,5),(3,4),(3,6),(5,6)],7) => -10
([(1,4),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,5),(0,6),(1,4),(2,4),(4,5),(4,6),(6,3)],7) => 0
([(0,5),(1,5),(2,4),(2,6),(5,6),(6,3)],7) => 2
([(0,6),(1,6),(2,3),(2,4),(6,5)],7) => -8
([(0,6),(1,6),(5,2),(5,3),(6,4),(6,5)],7) => 0
([(0,6),(1,6),(2,4),(2,5),(6,3),(6,5)],7) => 0
([(0,6),(1,6),(2,4),(2,5),(6,3),(6,4),(6,5)],7) => 0
([(1,6),(2,6),(3,4),(3,5),(3,6)],7) => 20
([(0,6),(1,6),(2,3),(2,4),(2,6),(6,5)],7) => -8
([(0,6),(1,6),(2,3),(2,4),(2,6),(4,5)],7) => -16
([(0,6),(1,6),(2,3),(2,4),(2,6),(4,5),(6,5)],7) => -6
([(0,6),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7) => -4
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => -4
([(0,6),(1,6),(2,3),(2,4),(2,5)],7) => 12
([(0,6),(1,6),(5,2),(5,3),(5,4),(6,5)],7) => 0
([(0,5),(1,5),(2,3),(2,4),(2,6),(5,6)],7) => -8
([(0,4),(1,4),(2,3),(2,5),(2,6),(4,5),(4,6)],7) => 0
([(0,6),(1,6),(2,3),(2,4),(2,5),(6,3),(6,4),(6,5)],7) => 0
([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6)],7) => 12
([(0,6),(1,2),(1,3),(1,5),(4,6),(5,4)],7) => -18
([(0,3),(0,4),(0,5),(1,6),(2,6),(5,1),(5,2)],7) => 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(4,2),(5,1)],7) => 8
([(0,6),(1,6),(2,3),(2,4),(2,5),(5,6)],7) => 4
([(0,6),(1,2),(1,4),(1,5),(3,6),(4,6),(5,3)],7) => -11
([(0,3),(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2)],7) => 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => 6
([(0,6),(1,6),(2,3),(2,4),(2,5),(4,6),(5,6)],7) => 0
([(0,6),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2)],7) => -8
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => 0
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => 0
([(1,6),(2,6),(3,4),(3,5),(5,6)],7) => 10
([(0,6),(1,6),(2,3),(2,4),(4,6),(6,5)],7) => -4
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,6),(1,6),(2,3),(2,4),(3,6),(4,6),(6,5)],7) => 0
([(0,6),(1,6),(2,3),(2,4),(4,5)],7) => -16
([(0,6),(1,6),(4,3),(5,2),(5,4),(6,5)],7) => 0
([(0,5),(1,5),(2,3),(2,6),(3,4),(5,6)],7) => 2
([(0,4),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6)],7) => 0
([(0,4),(1,4),(2,3),(2,5),(3,6),(4,5),(5,6)],7) => 2
([(0,6),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7) => 0
([(0,5),(1,5),(2,3),(2,4),(4,6),(5,6)],7) => -6
([(0,6),(1,3),(1,5),(4,6),(5,2),(5,4)],7) => -7
([(0,4),(0,5),(2,6),(3,6),(5,1),(5,2),(5,3)],7) => 0
([(0,6),(1,6),(2,3),(2,4),(4,5),(4,6)],7) => -14
([(0,6),(1,4),(1,5),(3,6),(4,2),(5,3)],7) => 7
([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(6,5)],7) => 5
([(0,6),(1,4),(1,5),(3,6),(4,3),(5,2),(5,6)],7) => 5
([(0,4),(0,5),(2,6),(3,6),(4,1),(4,6),(5,2),(5,3)],7) => 2
([(0,3),(0,4),(1,6),(2,6),(3,5),(3,6),(4,1),(4,2),(4,5)],7) => 2
([(0,6),(1,3),(1,4),(2,6),(3,5),(3,6),(4,2),(4,5)],7) => 1
([(0,4),(0,5),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => 4
([(0,3),(0,4),(1,5),(2,5),(3,2),(3,6),(4,1),(4,6)],7) => 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => 0
([(0,4),(0,5),(2,6),(3,6),(4,1),(5,2),(5,3)],7) => 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(4,6)],7) => 2
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => 2
([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(4,5)],7) => 3
([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(4,5),(5,6)],7) => 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => -1
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,6)],7) => -14
([(0,6),(1,6),(2,3),(2,4),(3,6),(4,5),(6,5)],7) => -2
([(0,6),(1,4),(1,5),(3,6),(4,6),(5,2),(5,3)],7) => -3
([(0,4),(0,5),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => 0
([(0,6),(1,6),(2,3),(2,4),(3,6),(4,5),(4,6)],7) => -12
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => -12
([(0,6),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3)],7) => 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => 0
([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6)],7) => -4
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7) => 0
([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => -4
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(4,6)],7) => -2
([(0,6),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(6,4)],7) => 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 0
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => 0
([(0,6),(1,6),(2,3),(2,4),(4,5),(5,6)],7) => -18
([(0,6),(1,2),(1,5),(3,6),(4,6),(5,3),(5,4)],7) => 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3)],7) => 0
([(0,6),(1,4),(1,5),(2,6),(3,6),(4,3),(5,2)],7) => 8
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => 2
([(2,6),(3,6),(4,5),(5,6)],7) => 40
([(1,6),(2,6),(3,4),(4,6),(6,5)],7) => -10
([(0,6),(1,6),(2,3),(3,6),(6,4),(6,5)],7) => 0
([(1,6),(2,6),(3,4),(4,5)],7) => -20
([(1,6),(2,6),(3,5),(5,4),(6,3)],7) => 0
([(1,5),(2,5),(3,4),(4,6),(5,6)],7) => -10
([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7) => 2
([(0,6),(1,6),(2,3),(3,5),(6,4)],7) => 2
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7) => 0
([(0,5),(1,5),(2,3),(3,6),(5,4),(5,6)],7) => 0
([(1,6),(2,6),(3,4),(4,5),(4,6)],7) => -20
([(0,6),(1,6),(2,3),(3,5),(3,6),(6,4)],7) => 2
([(0,3),(1,6),(2,6),(3,5),(3,6),(5,4)],7) => 4
([(0,6),(1,6),(2,3),(3,4),(3,6),(4,5),(6,5)],7) => 4
([(0,3),(1,6),(2,6),(3,4),(3,5)],7) => -8
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7) => 0
([(0,5),(1,5),(2,3),(3,4),(3,6),(5,6)],7) => 2
([(0,4),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,6),(1,5),(4,6),(5,2),(5,3),(5,4)],7) => -4
([(0,5),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => 0
([(0,3),(1,6),(2,6),(3,4),(3,5),(3,6)],7) => -8
([(0,3),(1,6),(2,6),(3,4),(3,5),(5,6)],7) => -6
([(0,6),(1,5),(3,6),(4,6),(5,2),(5,3),(5,4)],7) => 0
([(0,5),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => 0
([(0,3),(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,6),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3),(5,4)],7) => 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => 0
([(1,3),(2,6),(3,5),(4,6),(5,4)],7) => 15
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7) => -3
([(1,4),(2,6),(3,6),(4,5),(5,2),(5,3)],7) => 0
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => -30
([(0,6),(1,6),(2,3),(3,5),(5,6),(6,4)],7) => 6
([(0,3),(1,6),(2,6),(3,5),(5,4)],7) => 4
([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7) => 0
([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7) => 4
([(0,6),(1,4),(3,6),(4,5),(5,2),(5,3)],7) => 3
([(0,4),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => 0
([(0,3),(1,6),(2,6),(3,5),(5,4),(5,6)],7) => 6
([(1,6),(2,6),(3,5),(4,5)],7) => 0
([(1,6),(2,6),(3,5),(4,5),(4,6)],7) => 0
([(0,6),(1,6),(2,5),(3,5),(3,6),(5,4)],7) => 0
([(0,6),(1,6),(2,4),(3,4),(3,6),(4,5),(6,5)],7) => 0
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4)],7) => 0
([(0,6),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) => 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(6,4)],7) => 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4)],7) => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) => 0
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => 0
([(0,6),(1,6),(2,5),(3,5),(3,6),(6,4)],7) => 0
([(1,6),(2,5),(3,5),(4,6),(5,4)],7) => 0
([(1,5),(2,5),(3,6),(4,6),(5,3),(5,4)],7) => 0
([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7) => 0
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7) => 0
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 0
([(0,6),(1,6),(2,5),(3,5),(5,6),(6,4)],7) => 0
([(0,6),(1,6),(2,5),(3,5),(6,4)],7) => 0
([(0,6),(1,5),(2,5),(4,6),(5,3),(5,4)],7) => 0
([(0,6),(1,6),(3,5),(4,5),(6,2),(6,3),(6,4)],7) => 0
([(0,6),(1,6),(2,5),(3,5),(5,4),(5,6)],7) => 0
([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7) => 0
([(0,6),(1,6),(2,5),(3,4)],7) => -16
([(0,6),(1,6),(2,3),(4,5),(6,4)],7) => 2
([(0,6),(1,6),(4,3),(5,2),(6,4),(6,5)],7) => 0
([(0,6),(1,6),(2,5),(3,4),(6,3),(6,5)],7) => 0
([(0,6),(1,5),(2,5),(3,4),(5,6)],7) => -8
([(0,4),(1,4),(2,6),(3,5),(4,5),(4,6)],7) => 0
([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7) => 0
([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => 0
([(0,6),(1,6),(2,5),(3,4),(3,6)],7) => -14
([(0,6),(1,6),(2,3),(2,6),(4,5),(6,4)],7) => 2
([(0,6),(1,6),(2,5),(3,4),(3,6),(6,5)],7) => -8
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5)],7) => -8
([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(6,4)],7) => 2
([(0,6),(1,5),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => -8
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6)],7) => -12
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => -6
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5)],7) => -6
([(0,6),(1,6),(2,4),(2,6),(3,4),(3,5),(6,5)],7) => 0
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -6
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => -6
([(0,6),(1,6),(2,5),(3,4),(3,6),(5,6)],7) => -18
([(0,6),(1,6),(2,5),(2,6),(3,4),(4,5)],7) => -6
([(0,6),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6)],7) => -6
([(0,5),(1,5),(2,6),(3,4),(3,6)],7) => -8
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6)],7) => 0
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,5),(1,4),(1,5),(2,4),(2,6),(3,6),(5,3)],7) => 0
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(5,6)],7) => 0
([(0,6),(1,5),(2,5),(3,4),(3,6),(5,3)],7) => 0
([(0,4),(1,5),(2,5),(3,4),(3,6),(5,6)],7) => 0
([(0,6),(1,5),(1,6),(2,4),(3,4),(4,5),(4,6)],7) => 0
([(0,5),(1,5),(2,3),(2,6),(4,6),(5,4)],7) => 2
([(0,6),(1,6),(3,5),(4,2),(4,5),(6,3),(6,4)],7) => 0
([(0,5),(1,5),(2,4),(2,6),(3,6),(5,3),(5,4)],7) => 0
([(0,6),(1,5),(2,5),(3,4),(3,6),(5,6)],7) => -8
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6)],7) => -8
([(0,6),(1,6),(2,5),(3,4),(3,5),(4,6)],7) => -8
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,6),(5,4)],7) => 4
([(0,5),(1,2),(1,5),(2,6),(3,6),(4,6),(5,3),(5,4)],7) => 0
([(0,6),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => -12
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6)],7) => 0
([(0,5),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6)],7) => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(3,5),(4,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => 0
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6)],7) => 0
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(4,3)],7) => 0
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,3)],7) => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(6,2),(6,3)],7) => 0
([(0,5),(1,5),(2,4),(2,6),(3,4),(3,6),(5,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(4,5),(4,6)],7) => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => 0
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,6),(5,3)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(6,2),(6,3)],7) => 0
([(0,3),(1,5),(1,6),(2,5),(2,6),(4,3),(5,4),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(5,3),(6,2)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,3),(5,4),(6,2),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(3,2),(4,2),(5,3),(5,4),(6,3),(6,4)],7) => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,3)],7) => 0
([(0,4),(0,5),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3)],7) => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,6),(1,5),(2,3),(2,5),(4,6),(5,4)],7) => 4
([(0,6),(1,2),(1,6),(3,5),(4,5),(6,3),(6,4)],7) => 0
([(0,6),(1,6),(2,5),(3,4),(3,5),(5,6)],7) => -12
([(0,6),(1,6),(2,4),(3,5),(5,6)],7) => -20
([(0,6),(1,6),(2,3),(3,6),(4,5),(6,4)],7) => 2
([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => -8
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => -24
([(0,6),(1,5),(2,5),(3,4),(4,6)],7) => -8
([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7) => 0
([(0,5),(1,5),(2,3),(3,6),(4,6),(5,4)],7) => 2
([(0,6),(1,6),(2,5),(3,5),(4,3),(6,2),(6,4)],7) => 0
([(0,5),(1,5),(2,4),(3,6),(4,6),(5,3),(5,4)],7) => 0
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => -8
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6)],7) => -8
([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7) => 4
([(0,6),(1,2),(2,6),(3,5),(4,5),(6,3),(6,4)],7) => 0
([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => -12
([(3,6),(4,5)],7) => 120
([(3,6),(4,5),(4,6)],7) => 60
([(2,6),(3,4),(3,6),(4,5)],7) => -20
([(1,6),(2,3),(2,6),(3,4),(3,5)],7) => -10
([(0,6),(1,5),(1,6),(5,2),(5,3),(5,4)],7) => -6
([(0,6),(1,4),(1,6),(4,2),(4,3),(4,5),(6,5)],7) => 2
([(0,6),(1,3),(1,6),(3,2),(3,4),(3,5),(6,4),(6,5)],7) => 0
([(0,6),(1,2),(1,6),(2,3),(2,4),(2,5),(6,3),(6,4),(6,5)],7) => 0
([(1,5),(2,3),(2,5),(3,4),(3,6),(5,6)],7) => 0
([(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,5),(1,4),(1,5),(4,3),(4,6),(5,6),(6,2)],7) => 1
([(0,6),(1,5),(1,6),(5,2),(5,3),(6,4)],7) => 2
([(0,6),(1,4),(1,6),(4,3),(4,5),(6,2),(6,5)],7) => 0
([(0,6),(1,3),(1,6),(3,4),(3,5),(6,2),(6,4),(6,5)],7) => 0
([(2,5),(3,4),(3,5),(4,6),(5,6)],7) => -20
([(1,5),(2,3),(2,5),(3,6),(5,6),(6,4)],7) => 5
([(0,5),(1,4),(1,5),(4,6),(5,6),(6,2),(6,3)],7) => 0
([(1,6),(2,3),(2,6),(3,5),(6,4)],7) => 0
([(1,5),(2,3),(2,5),(3,6),(5,4),(5,6)],7) => 0
([(0,6),(1,5),(1,6),(5,2),(6,3),(6,4)],7) => 0
([(0,6),(1,4),(1,6),(4,5),(6,2),(6,3),(6,5)],7) => 0
([(1,6),(2,3),(2,6),(3,5),(5,4)],7) => 0
([(1,5),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => 5
([(0,5),(1,4),(1,5),(3,6),(4,3),(5,6),(6,2)],7) => -1
([(0,6),(1,5),(1,6),(4,2),(5,4),(6,3)],7) => 2
([(0,6),(1,3),(1,6),(3,5),(5,4),(6,2),(6,5)],7) => 1
([(0,6),(1,4),(1,6),(3,5),(4,3),(6,2),(6,5)],7) => 1
([(0,6),(1,4),(1,6),(4,5),(5,2),(5,3)],7) => 2
([(0,6),(1,3),(1,6),(3,4),(4,2),(4,5),(6,5)],7) => 1
([(0,6),(1,2),(1,6),(2,3),(3,4),(3,5),(6,4),(6,5)],7) => 0
([(3,5),(3,6),(4,5),(4,6)],7) => 0
([(2,5),(2,6),(3,5),(3,6),(6,4)],7) => 0
([(1,5),(1,6),(2,5),(2,6),(6,3),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(6,2),(6,3),(6,4)],7) => 0
([(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(1,4),(1,5),(2,4),(2,5),(4,6),(5,6),(6,3)],7) => 0
([(1,5),(1,6),(2,5),(2,6),(5,4),(6,3)],7) => 0
([(1,4),(1,6),(2,4),(2,6),(4,5),(6,3),(6,5)],7) => 0
([(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(5,4),(6,2),(6,3)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(5,4),(6,2),(6,3),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(5,3),(5,4),(6,2),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(5,3),(5,4),(6,2),(6,3),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(5,2),(5,3),(5,4),(6,2),(6,3),(6,4)],7) => 0
([(1,5),(1,6),(2,5),(2,6),(3,4)],7) => 0
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => 0
([(0,4),(1,5),(1,6),(2,4),(2,5),(2,6),(6,3)],7) => 0
([(0,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3),(6,3)],7) => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(5,3),(6,3)],7) => 0
([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => 0
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3)],7) => 0
([(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7) => 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => 0
([(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(4,5),(6,5)],7) => 0
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(6,3)],7) => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(6,3)],7) => 0
([(1,5),(1,6),(2,5),(2,6),(3,4),(6,3)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(4,3),(5,4),(6,2)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(5,4),(6,2),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(4,2),(5,3),(5,4),(6,3),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(5,2),(5,3),(6,3),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(4,3),(5,4),(6,2),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(3,4),(5,3),(6,2),(6,4)],7) => 0
([(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => 0
([(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,3)],7) => 0
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(4,6),(5,6),(6,3)],7) => 0
([(0,5),(1,4),(1,6),(2,4),(2,6),(4,5),(6,3)],7) => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(4,6),(5,3),(5,6)],7) => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(5,6),(6,3)],7) => 0
([(0,4),(1,5),(1,6),(2,5),(2,6),(4,3),(5,4),(6,3)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(6,3)],7) => -2
([(0,5),(0,6),(1,5),(1,6),(4,3),(6,2),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(3,4),(5,2),(5,3),(6,4)],7) => 0
([(0,5),(1,4),(1,6),(2,4),(2,6),(6,3),(6,5)],7) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,6),(5,6)],7) => 0
([(0,4),(1,5),(1,6),(2,5),(2,6),(5,3),(6,3),(6,4)],7) => 0
([(0,6),(1,3),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(6,4)],7) => -2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => 0
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,6),(4,5),(6,3)],7) => 0
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,6),(4,5),(5,3)],7) => 0
([(0,3),(0,6),(1,3),(1,6),(2,5),(2,6),(3,5),(5,4),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(5,4)],7) => -2
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,6),(4,5),(6,5)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(5,3),(5,4)],7) => 0
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,6),(3,4),(3,5),(6,5)],7) => 0
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(6,3)],7) => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(5,4),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(6,4)],7) => -2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => 0
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,6),(5,4)],7) => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,6),(5,4),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,6),(6,4)],7) => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4)],7) => 0
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(6,5)],7) => -2
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5)],7) => -2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,6),(4,6),(5,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(5,4)],7) => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7) => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(4,2),(4,3),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(4,2),(4,3),(5,4),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(3,2),(3,4),(5,3),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(5,2),(6,3),(6,4)],7) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,6),(5,6)],7) => -2
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(6,3),(6,4)],7) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,6),(4,6),(5,6)],7) => 0
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(5,4),(6,3)],7) => 0
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(3,6),(4,5),(4,6)],7) => 0
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6)],7) => 0
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(4,5)],7) => -2
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(4,6)],7) => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6),(4,6)],7) => -4
([(0,5),(0,6),(1,2),(1,4),(3,5),(3,6),(4,3)],7) => 0
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(4,1),(4,2)],7) => 0
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,2),(4,1)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(4,6)],7) => -2
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(3,6),(4,5)],7) => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(4,5),(4,6)],7) => 0
([(0,5),(0,6),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,2)],7) => 0
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2)],7) => 0
([(0,5),(0,6),(1,2),(1,4),(2,6),(3,5),(3,6),(4,3)],7) => 2
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,6),(4,1),(4,2)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,6),(4,6)],7) => -4
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => -4
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,6),(4,5),(4,6)],7) => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(1,5),(1,6),(2,5),(2,6),(3,4),(4,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,6),(6,4)],7) => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,6),(5,4)],7) => -2
([(0,4),(0,6),(1,4),(1,6),(2,3),(3,6),(4,5),(6,5)],7) => 0
([(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(4,5),(4,6),(6,3)],7) => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,5),(3,6),(5,4),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(6,3)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(5,3),(6,4)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(5,2),(6,4)],7) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,6),(5,6)],7) => -2
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,6),(4,6),(5,6)],7) => 0
([(0,5),(0,6),(1,4),(3,5),(3,6),(4,2),(4,3)],7) => 0
([(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2),(4,3)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(3,6)],7) => 0
([(0,4),(0,6),(1,4),(1,6),(2,3),(3,5),(3,6),(4,5)],7) => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(3,5),(3,6)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(3,6),(4,5)],7) => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(4,6)],7) => -2
([(0,5),(0,6),(1,4),(2,6),(3,5),(3,6),(4,2),(4,3)],7) => 2
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2),(4,3)],7) => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(4,5),(4,6)],7) => 0
([(0,5),(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,2),(4,3)],7) => 0
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2),(4,3)],7) => 0
([(2,6),(3,4),(3,6),(6,5)],7) => -20
([(1,6),(2,3),(2,6),(6,4),(6,5)],7) => 0
([(0,6),(1,2),(1,6),(6,3),(6,4),(6,5)],7) => 0
([(2,6),(3,4),(3,5)],7) => 40
([(2,6),(3,4),(3,5),(3,6)],7) => 40
([(1,6),(2,3),(2,4),(2,6),(4,5)],7) => -20
([(0,6),(1,4),(1,5),(1,6),(5,2),(5,3)],7) => -8
([(0,6),(1,3),(1,4),(1,6),(4,2),(4,5),(6,5)],7) => 1
([(0,6),(1,2),(1,3),(1,6),(3,4),(3,5),(6,4),(6,5)],7) => 0
([(1,5),(2,3),(2,4),(2,5),(4,6),(5,6)],7) => -15
([(0,5),(1,3),(1,4),(1,5),(4,6),(5,6),(6,2)],7) => 4
([(0,6),(1,3),(1,5),(1,6),(5,2),(6,4)],7) => 2
([(0,6),(1,3),(1,4),(1,6),(4,5),(6,2),(6,5)],7) => 1
([(1,5),(2,3),(2,4),(2,5),(3,6),(4,6)],7) => -10
([(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => -10
([(0,5),(1,2),(1,3),(1,5),(2,6),(3,6),(5,6),(6,4)],7) => 2
([(0,6),(1,3),(1,4),(1,6),(3,5),(4,5),(6,2)],7) => 2
([(0,5),(1,2),(1,3),(1,5),(2,6),(3,6),(5,4),(5,6)],7) => 2
([(0,5),(1,3),(1,4),(1,5),(3,6),(4,6),(6,2)],7) => 2
([(0,6),(1,2),(1,3),(1,6),(2,5),(3,5),(5,4),(6,4)],7) => 2
([(0,6),(1,4),(1,5),(1,6),(4,3),(5,2)],7) => 0
([(0,6),(1,3),(1,4),(1,6),(3,5),(4,2),(4,5)],7) => 0
([(0,6),(1,2),(1,3),(1,6),(2,5),(3,4),(3,5),(6,4)],7) => 1
([(0,4),(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
([(0,5),(1,3),(1,4),(1,5),(3,6),(4,2),(4,6),(5,6)],7) => 2
([(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => 0
([(0,4),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6)],7) => 0
([(0,4),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 0
([(0,6),(1,3),(1,4),(1,6),(3,5),(4,2),(6,5)],7) => 3
([(0,6),(1,2),(1,3),(1,6),(2,5),(3,4),(6,4),(6,5)],7) => 2
([(1,6),(2,3),(2,4),(2,6),(6,5)],7) => -20
([(0,6),(1,2),(1,3),(1,6),(6,4),(6,5)],7) => 0
([(1,6),(2,3),(2,4),(2,5)],7) => 30
([(1,6),(2,3),(2,4),(2,5),(2,6)],7) => 30
([(0,6),(1,3),(1,4),(1,5),(1,6),(5,2)],7) => -18
([(0,6),(1,2),(1,3),(1,4),(1,6),(4,5),(6,5)],7) => -12
([(0,6),(1,2),(1,3),(1,4),(1,6),(3,5),(4,5)],7) => -8
([(0,5),(1,2),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6)],7) => -8
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6)],7) => -6
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7) => -6
([(0,6),(1,2),(1,3),(1,4),(1,6),(6,5)],7) => -18
([(0,6),(1,2),(1,3),(1,4),(1,5)],7) => 24
([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7) => 24
([(0,2),(0,3),(0,4),(0,6),(5,1),(6,5)],7) => -24
([(0,6),(1,2),(1,3),(1,4),(1,5),(5,6)],7) => 6
([(0,2),(0,3),(0,4),(0,5),(1,6),(4,6),(5,1)],7) => -12
([(0,6),(1,2),(1,3),(1,4),(1,5),(4,6),(5,6)],7) => 0
([(0,2),(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1)],7) => -8
([(0,6),(1,2),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6)],7) => 0
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => -6
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7) => 0
([(0,5),(1,2),(1,3),(1,4),(1,6),(5,6)],7) => -18
([(0,4),(1,2),(1,3),(1,5),(1,6),(4,5),(4,6)],7) => 0
([(0,3),(1,2),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6)],7) => 0
([(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7) => 0
([(1,3),(1,4),(1,6),(5,2),(6,5)],7) => -30
([(0,3),(0,4),(0,5),(5,6),(6,1),(6,2)],7) => 0
([(1,6),(2,3),(2,4),(2,5),(5,6)],7) => 10
([(0,6),(1,2),(1,3),(1,4),(4,6),(6,5)],7) => -6
([(1,2),(1,4),(1,5),(3,6),(4,6),(5,3)],7) => -15
([(0,3),(0,4),(0,5),(1,6),(4,6),(5,1),(6,2)],7) => 4
([(1,6),(2,3),(2,4),(2,5),(4,6),(5,6)],7) => 0
([(0,6),(1,2),(1,3),(1,4),(3,6),(4,6),(6,5)],7) => 0
([(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2)],7) => -10
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => 2
([(1,6),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => 0
([(0,6),(1,2),(1,3),(1,4),(2,6),(3,6),(4,6),(6,5)],7) => 0
([(0,6),(1,3),(1,4),(1,5),(3,6),(4,6),(5,2)],7) => -8
([(0,6),(1,2),(1,3),(1,4),(2,6),(3,6),(4,5),(6,5)],7) => 0
([(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => -2
([(0,6),(1,3),(1,4),(1,5),(3,6),(4,6),(5,2),(5,6)],7) => -8
([(0,6),(1,3),(1,4),(1,5),(4,6),(5,2)],7) => -14
([(0,6),(1,2),(1,3),(1,4),(3,6),(4,5),(6,5)],7) => -3
([(0,3),(0,4),(0,5),(2,6),(4,6),(5,1),(5,2)],7) => -4
([(0,6),(1,3),(1,4),(1,5),(4,6),(5,2),(5,6)],7) => -11
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The alternating sum of the coefficients of the Poincare polynomial of the poset cone.
For a poset P on {1,,n}, let KP={xRn|xi<xj for i<Pj}. Furthermore let L(A) be the intersection lattice of the braid arrangement An1 and let Lint={XL(A)|XKP}.
Then the Poincare polynomial of the poset cone is Poin(t)=XLint|μ(0,X)|tcodimX.
This statistic records its Poin(1).
References
[1] Dorpalen-Barry, G., Kim, J. S., Reiner, V. Whitney Numbers for Poset Cones arXiv:1906.00036
Code
# code by Jang Soo Kim
def delete_elements(P,A):
    "Return the poset obtained from P by deleting the elements in A"
    elms = [x for x in  P.list() if x not in A]
    rels = [R for R in P.relations() if R[0] not in A and R[1] not in A]
    return Poset([elms,rels], cover_relations=False)

def add_bottom(P):
    "Return the poset obtained from P by adding the minimum element 0."
    elms = ["zero_hat"] + P.list()
    rels = [["zero_hat",x] for x in P.list()] + P.relations()
    return Poset([elms,rels], cover_relations=False)

def Poin(P,t,omega=0):
    """
    Input:

    P: a poset or a list of numbers [a,b,c,...].
    If P = [a,b,c,...], then P is set to be the cell poset of the partition [a,b,c,...].

    t: a variable

    omega: a labeling of P which is given by default to the first lin ext of P.

    Output: The Poincare polynomial of the poset P.
    The bijection from linear extensions to P-transverse permutations is used.
    """
    if type(P) == list:
        P = Partition(P).cell_poset().dual()
    if omega == 0:
        omega = P.linear_extensions()[0]
    poly = 0
    for L in P.linear_extensions():
        poly += t^(len(P)-len(get_P_transverse_permutation(P,omega,L)))
    return poly

def get_P_transverse_permutation(P,omega,L):
    """
    Input:
    P: a poset
    omega: a labeling of P
    L: a linear extension of P

    Output: The P-transverse permutation corresponding to L with respect to omega.
    """
    Q = add_bottom(P)
    pi = []
    while len(L)>0:
        N = next_level(Q,P,omega,L)
        pi = pi + N[-1]
        [Q, P, omega, L] = N[:-1]
    return pi

def next_level(Q,P,omega,L):
    """
    INPUT: Q,P,omega,L
    Q: poset containing P
    omega: labeling
    L: a linear extension of P

    OUTPUT: [Q1, P1, omega, L1, pi]
    Q1 = P
    P1 = P - minimal blocks
    omega = omega
    L1 = L restricted to P1
    pi = P-transverse permutation of the minimal blocks in P.
    """
    L1 = L
    pi = []
    C = []   # the list of current level elements in P
    D = []   # the list of current level elements in P that are not minimal in Q
    B = []
    for x in L:
        if x not in P.minimal_elements():  # If x is not a minimal element in P this level is done.
            break
        C.append(x)
        if x not in Q.minimal_elements():
            D.append(x)
            if omega.index(x) == min([omega.index(d) for d in D]):
                if len(B)>0:
                    pi.append(B)
                B = [x]
        else:
            B.append(x)
    pi.append(B)
    Q1 = P
    P1 = delete_elements(P,C)
    L1 = L[len(C):]
    return [Q1, P1, omega, L1, pi]

statistic = lambda P: Poin(P, -1)

Created
May 03, 2020 at 19:08 by Martin Rubey
Updated
May 03, 2020 at 19:08 by Martin Rubey