Identifier
Values
[[]] => ([(0,1)],2) => ([(0,1)],2) => 2
[[],[]] => ([(0,2),(1,2)],3) => ([(0,1)],2) => 2
[[[]]] => ([(0,2),(1,2)],3) => ([(0,1)],2) => 2
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => 2
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[[[],[]]] => ([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => 2
[[[[]]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 2
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[[],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[[[]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[[]],[[]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[]]],[]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 2
[[[],[[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[]],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[]]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 2
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[[[],[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[]],[[],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[]],[[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[],[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 2
[[[],[],[[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[],[[]],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[],[[[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[]],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[]]],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[],[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[],[],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1)],2) => 2
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[],[],[[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[],[[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[],[],[[],[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[],[[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[],[[[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[]],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[]],[[],[],[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[]]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[]],[[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[],[]]],[],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[],[]],[[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[],[],[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1)],2) => 2
[[[],[],[],[[]]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[],[],[[]],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[],[],[[],[]]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[],[],[[[]]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[[]],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[],[[],[]],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[],[[[]]],[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[],[[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[],[[[],[]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[]],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[],[]],[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[]]],[],[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[],[],[]],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[],[]]],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[],[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[],[],[]]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The second Elser number of a connected graph.
For a connected graph $G$ the $k$-th Elser number is
$$ els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k $$
where the sum is over all nuclei of $G$, that is, the connected subgraphs of $G$ whose vertex set is a vertex cover of $G$.
It is clear that this number is even. It was shown in [1] that it is non-negative.
Map
de-duplicate
Description
The de-duplicate of a graph.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.