Identifier
-
Mp00010:
Binary trees
—to ordered tree: left child = left brother⟶
Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001545: Graphs ⟶ ℤ
Values
[.,.] => [[]] => ([(0,1)],2) => ([(0,1)],2) => 2
[.,[.,.]] => [[[]]] => ([(0,2),(1,2)],3) => ([(0,1)],2) => 2
[[.,.],.] => [[],[]] => ([(0,2),(1,2)],3) => ([(0,1)],2) => 2
[.,[.,[.,.]]] => [[[[]]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,.],.]] => [[[],[]]] => ([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => 2
[[.,.],[.,.]] => [[],[[]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,.]],.] => [[[]],[]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,.],.],.] => [[],[],[]] => ([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => 2
[.,[.,[.,[.,.]]]] => [[[[[]]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[.,[[.,.],.]]] => [[[[],[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,.],[.,.]]] => [[[],[[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,[.,.]],.]] => [[[[]],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,.],.],.]] => [[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 2
[[.,.],[.,[.,.]]] => [[],[[[]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[.,.],[[.,.],.]] => [[],[[],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,.]],[.,.]] => [[[]],[[]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],.],[.,.]] => [[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,[.,.]]],.] => [[[[]]],[]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[.,[[.,.],.]],.] => [[[],[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,.],[.,.]],.] => [[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,[.,.]],.],.] => [[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,.],.],.],.] => [[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 2
[.,[.,[.,[[.,.],.]]]] => [[[[[],[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[.,[[[.,.],.],.]]] => [[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,.],[.,[.,.]]]] => [[[],[[[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[.,.],[[.,.],.]]] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,.],.],[.,.]]] => [[[],[],[[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,[.,[.,.]]],.]] => [[[[[]]],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[.,[[.,.],.]],.]] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,.],[.,.]],.]] => [[[],[[]],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,[.,.]],.],.]] => [[[[]],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[[.,.],.],.],.]] => [[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 2
[[.,.],[.,[[.,.],.]]] => [[],[[[],[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[.,.],[[[.,.],.],.]] => [[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,.]],[[.,.],.]] => [[[]],[[],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],.],[.,[.,.]]] => [[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],.],[[.,.],.]] => [[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[[.,.],.]],[.,.]] => [[[],[]],[[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[.,.],.],.],[.,.]] => [[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,[[.,.],.]]],.] => [[[[],[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[.,[[[.,.],.],.]],.] => [[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,.],[.,[.,.]]],.] => [[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],[[.,.],.]],.] => [[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,.],.],[.,.]],.] => [[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,[.,[.,.]]],.],.] => [[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,[[.,.],.]],.],.] => [[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,.],[.,.]],.],.] => [[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,[.,.]],.],.],.] => [[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[.,.],.],.],.],.] => [[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 2
[.,[.,[.,[[[.,.],.],.]]]] => [[[[[],[],[]]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[.,[[[[.,.],.],.],.]]] => [[[[],[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,.],[.,[[.,.],.]]]] => [[[],[[[],[]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[.,.],[[[.,.],.],.]]] => [[[],[[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,.],.],[.,[.,.]]]] => [[[],[],[[[]]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[[.,.],.],[[.,.],.]]] => [[[],[],[[],[]]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[[.,.],.],.],[.,.]]] => [[[],[],[],[[]]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[.,[.,[[.,.],.]]],.]] => [[[[[],[]]],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[.,[[[.,.],.],.]],.]] => [[[[],[],[]],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,.],[.,[.,.]]],.]] => [[[],[[[]]],[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[[.,.],[[.,.],.]],.]] => [[[],[[],[]],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[[.,.],.],[.,.]],.]] => [[[],[],[[]],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[.,[.,[.,.]]],.],.]] => [[[[[]]],[],[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[.,[[[.,[[.,.],.]],.],.]] => [[[[],[]],[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[[.,.],[.,.]],.],.]] => [[[],[[]],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[[.,[.,.]],.],.],.]] => [[[[]],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[.,[[[[[.,.],.],.],.],.]] => [[[],[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1)],2) => 2
[[.,.],[.,[[[.,.],.],.]]] => [[],[[[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[.,.],[[[[.,.],.],.],.]] => [[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,.]],[[[.,.],.],.]] => [[[]],[[],[],[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],.],[.,[[.,.],.]]] => [[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],.],[[[.,.],.],.]] => [[],[],[[],[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[[.,.],.]],[[.,.],.]] => [[[],[]],[[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[.,.],.],.],[.,[.,.]]] => [[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[.,.],.],.],[[.,.],.]] => [[],[],[],[[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[[[.,.],.],.]],[.,.]] => [[[],[],[]],[[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[[.,.],.],.],.],[.,.]] => [[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,[[[.,.],.],.]]],.] => [[[[],[],[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[.,[[[[.,.],.],.],.]],.] => [[[],[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,.],[.,[[.,.],.]]],.] => [[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],[[[.,.],.],.]],.] => [[],[[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,.],.],[.,[.,.]]],.] => [[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[.,.],.],[[.,.],.]],.] => [[],[],[[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[.,.],.],.],[.,.]],.] => [[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,[.,[[.,.],.]]],.],.] => [[[[],[]]],[],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,[[[.,.],.],.]],.],.] => [[[],[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,.],[.,[.,.]]],.],.] => [[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[.,.],[[.,.],.]],.],.] => [[],[[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[.,.],.],[.,.]],.],.] => [[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[.,[.,[.,.]]],.],.],.] => [[[[]]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[[.,[[.,.],.]],.],.],.] => [[[],[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[.,.],[.,.]],.],.],.] => [[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[.,[.,.]],.],.],.],.] => [[[]],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,3)],4) => 2
[[[[[[.,.],.],.],.],.],.] => [[],[],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1)],2) => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The second Elser number of a connected graph.
For a connected graph $G$ the $k$-th Elser number is
$$ els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k $$
where the sum is over all nuclei of $G$, that is, the connected subgraphs of $G$ whose vertex set is a vertex cover of $G$.
It is clear that this number is even. It was shown in [1] that it is non-negative.
For a connected graph $G$ the $k$-th Elser number is
$$ els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k $$
where the sum is over all nuclei of $G$, that is, the connected subgraphs of $G$ whose vertex set is a vertex cover of $G$.
It is clear that this number is even. It was shown in [1] that it is non-negative.
Map
to ordered tree: left child = left brother
Description
Return an ordered tree of size $n+1$ by the following recursive rule:
- if $x$ is the left child of $y$, $x$ becomes the left brother of $y$,
- if $x$ is the right child of $y$, $x$ becomes the last child of $y$.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.
Map
de-duplicate
Description
The de-duplicate of a graph.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!