Identifier
- St001552: Permutations ⟶ ℤ
Values
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 1
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 1
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 0
[2,4,3,1] => 1
[3,1,2,4] => 0
[3,1,4,2] => 0
[3,2,1,4] => 1
[3,2,4,1] => 1
[3,4,1,2] => 0
[3,4,2,1] => 0
[4,1,2,3] => 0
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 2
[4,3,1,2] => 0
[4,3,2,1] => 0
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 1
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 0
[1,3,5,4,2] => 1
[1,4,2,3,5] => 0
[1,4,2,5,3] => 0
[1,4,3,2,5] => 1
[1,4,3,5,2] => 1
[1,4,5,2,3] => 0
[1,4,5,3,2] => 0
[1,5,2,3,4] => 0
[1,5,2,4,3] => 1
[1,5,3,2,4] => 1
[1,5,3,4,2] => 2
[1,5,4,2,3] => 0
[1,5,4,3,2] => 0
[2,1,3,4,5] => 0
[2,1,3,5,4] => 0
[2,1,4,3,5] => 0
[2,1,4,5,3] => 0
[2,1,5,3,4] => 0
[2,1,5,4,3] => 1
[2,3,1,4,5] => 0
[2,3,1,5,4] => 0
[2,3,4,1,5] => 0
[2,3,4,5,1] => 0
[2,3,5,1,4] => 0
[2,3,5,4,1] => 1
[2,4,1,3,5] => 0
[2,4,1,5,3] => 0
[2,4,3,1,5] => 1
[2,4,3,5,1] => 1
[2,4,5,1,3] => 0
[2,4,5,3,1] => 0
[2,5,1,3,4] => 0
[2,5,1,4,3] => 1
[2,5,3,1,4] => 1
[2,5,3,4,1] => 2
[2,5,4,1,3] => 0
[2,5,4,3,1] => 0
[3,1,2,4,5] => 0
[3,1,2,5,4] => 0
[3,1,4,2,5] => 0
[3,1,4,5,2] => 0
[3,1,5,2,4] => 0
[3,1,5,4,2] => 1
[3,2,1,4,5] => 1
[3,2,1,5,4] => 1
[3,2,4,1,5] => 1
[3,2,4,5,1] => 1
[3,2,5,1,4] => 1
[3,2,5,4,1] => 2
[3,4,1,2,5] => 0
[3,4,1,5,2] => 0
[3,4,2,1,5] => 0
[3,4,2,5,1] => 0
[3,4,5,1,2] => 0
[3,4,5,2,1] => 0
[3,5,1,2,4] => 0
[3,5,1,4,2] => 1
[3,5,2,1,4] => 0
>>> Load all 1199 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of inversions between excedances and fixed points of a permutation.
This is,
$$\operatorname{iefp}(\sigma) = \#\{1 \leq i,j \leq n \mid i < j = \sigma(j) < \sigma(i) \}.$$
This is,
$$\operatorname{iefp}(\sigma) = \#\{1 \leq i,j \leq n \mid i < j = \sigma(j) < \sigma(i) \}.$$
References
[1] Blitvić, N., Steingrímsson, E. Permutations, moments, measures arXiv:2001.00280
Code
def statistic(pi):
n = len(pi)
return sum(1 for j in [1 .. n] for i in [1 .. n] if i < j == pi(j) < pi(i))
Created
May 20, 2020 at 17:48 by Christian Stump
Updated
May 20, 2020 at 17:48 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!