edit this statistic or download as text // json
Identifier
Values
=>
[1,2]=>0 [2,1]=>0 [1,2,3]=>0 [1,3,2]=>0 [2,1,3]=>0 [2,3,1]=>0 [3,1,2]=>0 [3,2,1]=>0 [1,2,3,4]=>0 [1,2,4,3]=>1 [1,3,2,4]=>0 [1,3,4,2]=>1 [1,4,2,3]=>0 [1,4,3,2]=>1 [2,1,3,4]=>0 [2,1,4,3]=>1 [2,3,1,4]=>0 [2,3,4,1]=>1 [2,4,1,3]=>0 [2,4,3,1]=>1 [3,1,2,4]=>0 [3,1,4,2]=>1 [3,2,1,4]=>0 [3,2,4,1]=>1 [3,4,1,2]=>0 [3,4,2,1]=>1 [4,1,2,3]=>0 [4,1,3,2]=>1 [4,2,1,3]=>0 [4,2,3,1]=>1 [4,3,1,2]=>0 [4,3,2,1]=>1 [1,2,3,4,5]=>0 [1,2,3,5,4]=>0 [1,2,4,3,5]=>1 [1,2,4,5,3]=>1 [1,2,5,3,4]=>2 [1,2,5,4,3]=>2 [1,3,2,4,5]=>0 [1,3,2,5,4]=>0 [1,3,4,2,5]=>1 [1,3,4,5,2]=>1 [1,3,5,2,4]=>2 [1,3,5,4,2]=>2 [1,4,2,3,5]=>0 [1,4,2,5,3]=>0 [1,4,3,2,5]=>1 [1,4,3,5,2]=>1 [1,4,5,2,3]=>2 [1,4,5,3,2]=>2 [1,5,2,3,4]=>0 [1,5,2,4,3]=>0 [1,5,3,2,4]=>1 [1,5,3,4,2]=>1 [1,5,4,2,3]=>2 [1,5,4,3,2]=>2 [2,1,3,4,5]=>0 [2,1,3,5,4]=>0 [2,1,4,3,5]=>1 [2,1,4,5,3]=>1 [2,1,5,3,4]=>2 [2,1,5,4,3]=>2 [2,3,1,4,5]=>0 [2,3,1,5,4]=>0 [2,3,4,1,5]=>1 [2,3,4,5,1]=>1 [2,3,5,1,4]=>2 [2,3,5,4,1]=>2 [2,4,1,3,5]=>0 [2,4,1,5,3]=>0 [2,4,3,1,5]=>1 [2,4,3,5,1]=>1 [2,4,5,1,3]=>2 [2,4,5,3,1]=>2 [2,5,1,3,4]=>0 [2,5,1,4,3]=>0 [2,5,3,1,4]=>1 [2,5,3,4,1]=>1 [2,5,4,1,3]=>2 [2,5,4,3,1]=>2 [3,1,2,4,5]=>0 [3,1,2,5,4]=>0 [3,1,4,2,5]=>1 [3,1,4,5,2]=>1 [3,1,5,2,4]=>2 [3,1,5,4,2]=>2 [3,2,1,4,5]=>0 [3,2,1,5,4]=>0 [3,2,4,1,5]=>1 [3,2,4,5,1]=>1 [3,2,5,1,4]=>2 [3,2,5,4,1]=>2 [3,4,1,2,5]=>0 [3,4,1,5,2]=>0 [3,4,2,1,5]=>1 [3,4,2,5,1]=>1 [3,4,5,1,2]=>2 [3,4,5,2,1]=>2 [3,5,1,2,4]=>0 [3,5,1,4,2]=>0 [3,5,2,1,4]=>1 [3,5,2,4,1]=>1 [3,5,4,1,2]=>2 [3,5,4,2,1]=>2 [4,1,2,3,5]=>0 [4,1,2,5,3]=>0 [4,1,3,2,5]=>1 [4,1,3,5,2]=>1 [4,1,5,2,3]=>2 [4,1,5,3,2]=>2 [4,2,1,3,5]=>0 [4,2,1,5,3]=>0 [4,2,3,1,5]=>1 [4,2,3,5,1]=>1 [4,2,5,1,3]=>2 [4,2,5,3,1]=>2 [4,3,1,2,5]=>0 [4,3,1,5,2]=>0 [4,3,2,1,5]=>1 [4,3,2,5,1]=>1 [4,3,5,1,2]=>2 [4,3,5,2,1]=>2 [4,5,1,2,3]=>0 [4,5,1,3,2]=>0 [4,5,2,1,3]=>1 [4,5,2,3,1]=>1 [4,5,3,1,2]=>2 [4,5,3,2,1]=>2 [5,1,2,3,4]=>0 [5,1,2,4,3]=>0 [5,1,3,2,4]=>1 [5,1,3,4,2]=>1 [5,1,4,2,3]=>2 [5,1,4,3,2]=>2 [5,2,1,3,4]=>0 [5,2,1,4,3]=>0 [5,2,3,1,4]=>1 [5,2,3,4,1]=>1 [5,2,4,1,3]=>2 [5,2,4,3,1]=>2 [5,3,1,2,4]=>0 [5,3,1,4,2]=>0 [5,3,2,1,4]=>1 [5,3,2,4,1]=>1 [5,3,4,1,2]=>2 [5,3,4,2,1]=>2 [5,4,1,2,3]=>0 [5,4,1,3,2]=>0 [5,4,2,1,3]=>1 [5,4,2,3,1]=>1 [5,4,3,1,2]=>2 [5,4,3,2,1]=>2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of inversions of the third entry of a permutation.
This is, for a permutation $\pi$ of length $n$,
$$\# \{3 < k \leq n \mid \pi(3) > \pi(k)\}.$$
The number of inversions of the first entry is St000054The first entry of the permutation. and the number of inversions of the second entry is St001557The number of inversions of the second entry of a permutation.. The sequence of inversions of all the entries define the Lehmer code of a permutation.
Code
def statistic(pi):
    k=3
    n=len(pi)
    return(sum(1 for i in [k+1 .. n] if pi(k)>pi(i)))
Created
Jun 25, 2020 at 10:01 by Kathrin Meier
Updated
Jun 25, 2020 at 10:52 by Christian Stump