edit this statistic or download as text // json
Identifier
Values
=>
[1,2]=>2 [2,1]=>2 [1,2,3]=>6 [1,3,2]=>6 [2,1,3]=>6 [2,3,1]=>6 [3,1,2]=>6 [3,2,1]=>6 [1,2,3,4]=>24 [1,2,4,3]=>24 [1,3,2,4]=>24 [1,3,4,2]=>24 [1,4,2,3]=>24 [1,4,3,2]=>24 [2,1,3,4]=>24 [2,1,4,3]=>24 [2,3,1,4]=>24 [2,3,4,1]=>24 [2,4,1,3]=>25 [2,4,3,1]=>24 [3,1,2,4]=>24 [3,1,4,2]=>25 [3,2,1,4]=>24 [3,2,4,1]=>24 [3,4,1,2]=>24 [3,4,2,1]=>24 [4,1,2,3]=>24 [4,1,3,2]=>24 [4,2,1,3]=>24 [4,2,3,1]=>24 [4,3,1,2]=>24 [4,3,2,1]=>24 [1,2,3,4,5]=>120 [1,2,3,5,4]=>120 [1,2,4,3,5]=>120 [1,2,4,5,3]=>120 [1,2,5,3,4]=>120 [1,2,5,4,3]=>120 [1,3,2,4,5]=>120 [1,3,2,5,4]=>120 [1,3,4,2,5]=>120 [1,3,4,5,2]=>120 [1,3,5,2,4]=>125 [1,3,5,4,2]=>120 [1,4,2,3,5]=>120 [1,4,2,5,3]=>125 [1,4,3,2,5]=>120 [1,4,3,5,2]=>120 [1,4,5,2,3]=>120 [1,4,5,3,2]=>120 [1,5,2,3,4]=>120 [1,5,2,4,3]=>120 [1,5,3,2,4]=>120 [1,5,3,4,2]=>120 [1,5,4,2,3]=>120 [1,5,4,3,2]=>120 [2,1,3,4,5]=>120 [2,1,3,5,4]=>120 [2,1,4,3,5]=>120 [2,1,4,5,3]=>120 [2,1,5,3,4]=>120 [2,1,5,4,3]=>120 [2,3,1,4,5]=>120 [2,3,1,5,4]=>120 [2,3,4,1,5]=>120 [2,3,4,5,1]=>120 [2,3,5,1,4]=>126 [2,3,5,4,1]=>120 [2,4,1,3,5]=>125 [2,4,1,5,3]=>128 [2,4,3,1,5]=>120 [2,4,3,5,1]=>120 [2,4,5,1,3]=>126 [2,4,5,3,1]=>120 [2,5,1,3,4]=>126 [2,5,1,4,3]=>126 [2,5,3,1,4]=>121 [2,5,3,4,1]=>120 [2,5,4,1,3]=>126 [2,5,4,3,1]=>120 [3,1,2,4,5]=>120 [3,1,2,5,4]=>120 [3,1,4,2,5]=>125 [3,1,4,5,2]=>126 [3,1,5,2,4]=>128 [3,1,5,4,2]=>126 [3,2,1,4,5]=>120 [3,2,1,5,4]=>120 [3,2,4,1,5]=>120 [3,2,4,5,1]=>120 [3,2,5,1,4]=>126 [3,2,5,4,1]=>120 [3,4,1,2,5]=>120 [3,4,1,5,2]=>126 [3,4,2,1,5]=>120 [3,4,2,5,1]=>120 [3,4,5,1,2]=>120 [3,4,5,2,1]=>120 [3,5,1,2,4]=>126 [3,5,1,4,2]=>128 [3,5,2,1,4]=>126 [3,5,2,4,1]=>125 [3,5,4,1,2]=>120 [3,5,4,2,1]=>120 [4,1,2,3,5]=>120 [4,1,2,5,3]=>126 [4,1,3,2,5]=>120 [4,1,3,5,2]=>121 [4,1,5,2,3]=>126 [4,1,5,3,2]=>126 [4,2,1,3,5]=>120 [4,2,1,5,3]=>126 [4,2,3,1,5]=>120 [4,2,3,5,1]=>120 [4,2,5,1,3]=>128 [4,2,5,3,1]=>125 [4,3,1,2,5]=>120 [4,3,1,5,2]=>126 [4,3,2,1,5]=>120 [4,3,2,5,1]=>120 [4,3,5,1,2]=>120 [4,3,5,2,1]=>120 [4,5,1,2,3]=>120 [4,5,1,3,2]=>120 [4,5,2,1,3]=>120 [4,5,2,3,1]=>120 [4,5,3,1,2]=>120 [4,5,3,2,1]=>120 [5,1,2,3,4]=>120 [5,1,2,4,3]=>120 [5,1,3,2,4]=>120 [5,1,3,4,2]=>120 [5,1,4,2,3]=>120 [5,1,4,3,2]=>120 [5,2,1,3,4]=>120 [5,2,1,4,3]=>120 [5,2,3,1,4]=>120 [5,2,3,4,1]=>120 [5,2,4,1,3]=>125 [5,2,4,3,1]=>120 [5,3,1,2,4]=>120 [5,3,1,4,2]=>125 [5,3,2,1,4]=>120 [5,3,2,4,1]=>120 [5,3,4,1,2]=>120 [5,3,4,2,1]=>120 [5,4,1,2,3]=>120 [5,4,1,3,2]=>120 [5,4,2,1,3]=>120 [5,4,2,3,1]=>120 [5,4,3,1,2]=>120 [5,4,3,2,1]=>120
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The product of the cardinalities of the lower order ideal and upper order ideal generated by a permutation in weak order.
Let $a(\pi)$ denote this statistic, then $a(\pi)$ is the product of [1] and [2]. A result of Sidorenko [3] implies that $a(\pi) \geq n!$ when $\pi$ is a permutation of $n$, with equality if and only if $\pi$ avoids the patterns $2413$ and $3142$. See [4] for a combinatorial proof and refinement. Upper bounds for $a(\pi)$ are given in [5].
References
[1] St000100oMp00065oMp00064
[2] St000100oMp00065
[3] Sidorenko, A. Inequalities for the number of linear extensions DOI:10.1007/BF00571183
[4] Gaetz, C., Gao, Y. Separable elements and splittings of Weyl groups arXiv:1911.11172
[5] Bollobás, Béla, Brightwell, G., Sidorenko, A. Geometrical Techniques for Estimating Numbers of Linear Extensions DOI:10.1006/eujc.1999.0299
Code
def statistic(pi):
    a1=pi.permutation_poset().linear_extensions().cardinality()
    a2=pi.reverse().permutation_poset().linear_extensions().cardinality()
    return a1*a2

Created
Jul 09, 2020 at 14:21 by Christian Gaetz
Updated
Jul 09, 2020 at 15:42 by Christian Stump