edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[1]=>1 [2]=>1 [1,1]=>4 [3]=>1 [2,1]=>4 [1,1,1]=>27 [4]=>1 [3,1]=>4 [2,2]=>4 [2,1,1]=>27 [1,1,1,1]=>256 [5]=>1 [4,1]=>4 [3,2]=>4 [3,1,1]=>27 [2,2,1]=>27 [2,1,1,1]=>256 [1,1,1,1,1]=>3125 [6]=>1 [5,1]=>4 [4,2]=>4 [4,1,1]=>27 [3,3]=>4 [3,2,1]=>27 [3,1,1,1]=>256 [2,2,2]=>27 [2,2,1,1]=>256 [2,1,1,1,1]=>3125 [1,1,1,1,1,1]=>46656 [7]=>1 [6,1]=>4 [5,2]=>4 [5,1,1]=>27 [4,3]=>4 [4,2,1]=>27 [4,1,1,1]=>256 [3,3,1]=>27 [3,2,2]=>27 [3,2,1,1]=>256 [3,1,1,1,1]=>3125 [2,2,2,1]=>256 [2,2,1,1,1]=>3125 [2,1,1,1,1,1]=>46656 [1,1,1,1,1,1,1]=>823543
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The value of the power-sum symmetric function evaluated at 1.
The statistic is $p_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=x_2=\dotsb=x_k$,
where $\lambda$ has $k$ parts.
References
[1] Stanley, R. P. Enumerative combinatorics. Vol. 2 MathSciNet:1676282
Created
Jul 11, 2020 at 10:03 by Per Alexandersson
Updated
Jul 11, 2020 at 10:03 by Per Alexandersson