Identifier
- St001564: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[1]=>1
[2]=>1
[1,1]=>3
[3]=>1
[2,1]=>6
[1,1,1]=>10
[4]=>1
[3,1]=>6
[2,2]=>3
[2,1,1]=>30
[1,1,1,1]=>35
[5]=>1
[4,1]=>6
[3,2]=>6
[3,1,1]=>30
[2,2,1]=>30
[2,1,1,1]=>140
[1,1,1,1,1]=>126
[6]=>1
[5,1]=>6
[4,2]=>6
[4,1,1]=>30
[3,3]=>3
[3,2,1]=>60
[3,1,1,1]=>140
[2,2,2]=>10
[2,2,1,1]=>210
[2,1,1,1,1]=>630
[1,1,1,1,1,1]=>462
[7]=>1
[6,1]=>6
[5,2]=>6
[5,1,1]=>30
[4,3]=>6
[4,2,1]=>60
[4,1,1,1]=>140
[3,3,1]=>30
[3,2,2]=>30
[3,2,1,1]=>420
[3,1,1,1,1]=>630
[2,2,2,1]=>140
[2,2,1,1,1]=>1260
[2,1,1,1,1,1]=>2772
[1,1,1,1,1,1,1]=>1716
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The value of the forgotten symmetric functions when all variables set to 1.
Let $f_\lambda(x)$ denote the forgotten symmetric functions.
Then the statistic associated with $\lambda$, where $\lambda$ has $\ell$ parts,
is $f_\lambda(1,1,\dotsc,1)$ where there are $\ell$ variables substituted by $1$.
Let $f_\lambda(x)$ denote the forgotten symmetric functions.
Then the statistic associated with $\lambda$, where $\lambda$ has $\ell$ parts,
is $f_\lambda(1,1,\dotsc,1)$ where there are $\ell$ variables substituted by $1$.
References
[1] Stanley, R. P. Enumerative combinatorics. Vol. 2 MathSciNet:1676282
Created
Jul 11, 2020 at 09:56 by Per Alexandersson
Updated
Jul 11, 2020 at 09:56 by Per Alexandersson
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!