Identifier
-
Mp00148:
Finite Cartan types
—to root poset⟶
Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St001568: Integer partitions ⟶ ℤ
Values
['A',2] => ([(0,2),(1,2)],3) => [2,1] => [1,1,1] => 2
['B',2] => ([(0,3),(1,3),(3,2)],4) => [3,1] => [3,1] => 1
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [5,1] => [5,1] => 1
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [3,1,1,1] => 2
['B',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => [5,3,1] => 1
['C',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => [5,3,1] => 1
['A',4] => ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10) => [4,3,2,1] => [3,1,1,1,1,1,1,1] => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The smallest positive integer that does not appear twice in the partition.
Map
Glaisher-Franklin inverse
Description
The Glaisher-Franklin bijection on integer partitions.
This map sends the number of distinct repeated part sizes to the number of distinct even part sizes, see [1, 3.3.1].
This map sends the number of distinct repeated part sizes to the number of distinct even part sizes, see [1, 3.3.1].
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!