Identifier
-
Mp00139:
Ordered trees
—Zeilberger's Strahler bijection⟶
Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
St001569: Permutations ⟶ ℤ
Values
[[],[]] => [.,[.,.]] => [2,1] => 1
[[[]]] => [[.,.],.] => [1,2] => 0
[[],[],[]] => [.,[.,[.,.]]] => [3,2,1] => 1
[[],[[]]] => [.,[[.,.],.]] => [2,3,1] => 1
[[[]],[]] => [[.,[.,.]],.] => [2,1,3] => 1
[[[],[]]] => [[.,.],[.,.]] => [3,1,2] => 1
[[[[]]]] => [[[.,.],.],.] => [1,2,3] => 0
[[],[],[],[]] => [.,[.,[.,[.,.]]]] => [4,3,2,1] => 1
[[],[],[[]]] => [.,[.,[[.,.],.]]] => [3,4,2,1] => 2
[[],[[]],[]] => [.,[[.,[.,.]],.]] => [3,2,4,1] => 2
[[],[[],[]]] => [.,[[.,.],[.,.]]] => [4,2,3,1] => 1
[[],[[[]]]] => [.,[[[.,.],.],.]] => [2,3,4,1] => 1
[[[]],[],[]] => [[.,[.,[.,.]]],.] => [3,2,1,4] => 2
[[[]],[[]]] => [[.,[[.,.],.]],.] => [2,3,1,4] => 2
[[[],[]],[]] => [[.,[.,.]],[.,.]] => [4,2,1,3] => 2
[[[[]]],[]] => [[[.,[.,.]],.],.] => [2,1,3,4] => 1
[[[],[],[]]] => [[.,.],[.,[.,.]]] => [4,3,1,2] => 2
[[[],[[]]]] => [[.,.],[[.,.],.]] => [3,4,1,2] => 2
[[[[]],[]]] => [[[.,.],.],[.,.]] => [4,1,2,3] => 1
[[[[],[]]]] => [[[.,.],[.,.]],.] => [3,1,2,4] => 2
[[[[[]]]]] => [[[[.,.],.],.],.] => [1,2,3,4] => 0
[[],[],[],[],[]] => [.,[.,[.,[.,[.,.]]]]] => [5,4,3,2,1] => 2
[[],[],[],[[]]] => [.,[.,[.,[[.,.],.]]]] => [4,5,3,2,1] => 2
[[],[],[[]],[]] => [.,[.,[[.,[.,.]],.]]] => [4,3,5,2,1] => 2
[[],[],[[],[]]] => [.,[.,[[.,.],[.,.]]]] => [5,3,4,2,1] => 2
[[],[],[[[]]]] => [.,[.,[[[.,.],.],.]]] => [3,4,5,2,1] => 2
[[],[[]],[],[]] => [.,[[.,[.,[.,.]]],.]] => [4,3,2,5,1] => 2
[[],[[]],[[]]] => [.,[[.,[[.,.],.]],.]] => [3,4,2,5,1] => 2
[[],[[],[]],[]] => [.,[[.,[.,.]],[.,.]]] => [5,3,2,4,1] => 1
[[],[[[]]],[]] => [.,[[[.,[.,.]],.],.]] => [3,2,4,5,1] => 2
[[],[[],[],[]]] => [.,[[.,.],[.,[.,.]]]] => [5,4,2,3,1] => 2
[[],[[],[[]]]] => [.,[[.,.],[[.,.],.]]] => [4,5,2,3,1] => 2
[[],[[[]],[]]] => [.,[[[.,.],.],[.,.]]] => [5,2,3,4,1] => 1
[[],[[[],[]]]] => [.,[[[.,.],[.,.]],.]] => [4,2,3,5,1] => 2
[[],[[[[]]]]] => [.,[[[[.,.],.],.],.]] => [2,3,4,5,1] => 1
[[[]],[],[],[]] => [[.,[.,[.,[.,.]]]],.] => [4,3,2,1,5] => 2
[[[]],[],[[]]] => [[.,[.,[[.,.],.]]],.] => [3,4,2,1,5] => 2
[[[]],[[]],[]] => [[.,[[.,[.,.]],.]],.] => [3,2,4,1,5] => 2
[[[]],[[],[]]] => [[.,.],[[.,.],[.,.]]] => [5,3,4,1,2] => 2
[[[]],[[[]]]] => [[.,[[[.,.],.],.]],.] => [2,3,4,1,5] => 2
[[[],[]],[],[]] => [[.,[.,.]],[.,[.,.]]] => [5,4,2,1,3] => 2
[[[[]]],[],[]] => [[[.,[.,[.,.]]],.],.] => [3,2,1,4,5] => 2
[[[],[]],[[]]] => [[.,[.,.]],[[.,.],.]] => [4,5,2,1,3] => 2
[[[[]]],[[]]] => [[[.,[[.,.],.]],.],.] => [2,3,1,4,5] => 2
[[[],[],[]],[]] => [[.,[.,[.,.]]],[.,.]] => [5,3,2,1,4] => 2
[[[],[[]]],[]] => [[.,[[.,.],.]],[.,.]] => [5,2,3,1,4] => 2
[[[[]],[]],[]] => [[[.,[.,.]],.],[.,.]] => [5,2,1,3,4] => 2
[[[[],[]]],[]] => [[[.,[.,.]],[.,.]],.] => [4,2,1,3,5] => 2
[[[[[]]]],[]] => [[[[.,[.,.]],.],.],.] => [2,1,3,4,5] => 1
[[[],[],[],[]]] => [[.,.],[.,[.,[.,.]]]] => [5,4,3,1,2] => 2
[[[],[],[[]]]] => [[.,.],[.,[[.,.],.]]] => [4,5,3,1,2] => 2
[[[],[[]],[]]] => [[.,.],[[.,[.,.]],.]] => [4,3,5,1,2] => 2
[[[],[[],[]]]] => [[.,[[.,.],[.,.]]],.] => [4,2,3,1,5] => 2
[[[],[[[]]]]] => [[.,.],[[[.,.],.],.]] => [3,4,5,1,2] => 2
[[[[]],[],[]]] => [[[.,.],.],[.,[.,.]]] => [5,4,1,2,3] => 2
[[[[]],[[]]]] => [[[.,.],.],[[.,.],.]] => [4,5,1,2,3] => 2
[[[[],[]],[]]] => [[[.,.],[.,.]],[.,.]] => [5,3,1,2,4] => 2
[[[[[]]],[]]] => [[[[.,.],.],.],[.,.]] => [5,1,2,3,4] => 1
[[[[],[],[]]]] => [[[.,.],[.,[.,.]]],.] => [4,3,1,2,5] => 2
[[[[],[[]]]]] => [[[.,.],[[.,.],.]],.] => [3,4,1,2,5] => 2
[[[[[]],[]]]] => [[[[.,.],.],[.,.]],.] => [4,1,2,3,5] => 2
[[[[[],[]]]]] => [[[[.,.],[.,.]],.],.] => [3,1,2,4,5] => 2
[[[[[[]]]]]] => [[[[[.,.],.],.],.],.] => [1,2,3,4,5] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The maximal modular displacement of a permutation.
This is $\max_{1\leq i \leq n} \left(\min(\pi(i)-i\pmod n, i-\pi(i)\pmod n)\right)$ for a permutation $\pi$ of $\{1,\dots,n\}$.
This is $\max_{1\leq i \leq n} \left(\min(\pi(i)-i\pmod n, i-\pi(i)\pmod n)\right)$ for a permutation $\pi$ of $\{1,\dots,n\}$.
Map
Zeilberger's Strahler bijection
Description
Zeilberger's Strahler bijection between ordered and binary trees.
This is a bijection sending the pruning number of the ordered tree to the Strahler number of the binary tree.
This is a bijection sending the pruning number of the ordered tree to the Strahler number of the binary tree.
Map
to 132-avoiding permutation
Description
Return a 132-avoiding permutation corresponding to a binary tree.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the maximal element of the Sylvester class.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the maximal element of the Sylvester class.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!