Identifier
Values
[[.,.],[[.,.],[.,.]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 0
[[[.,.],[.,.]],[.,.]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 0
[.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[.,[[[.,.],[.,.]],[.,.]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[.,.],[.,[[.,.],[.,.]]]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[.,.],[[.,.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[.,.],[[.,.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[.,.],[[.,[.,.]],[.,.]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[.,.],[[[.,.],.],[.,.]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[.,.],[[[.,.],[.,.]],.]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[.,[.,.]],[[.,.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[[.,.],.],[[.,.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[[.,.],[.,.]],[.,[.,.]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[[.,.],[.,.]],[[.,.],.]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[.,[[.,.],[.,.]]],[.,.]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[[.,.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[[.,.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[[.,[.,.]],[.,.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[[[.,.],.],[.,.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[[[.,.],[.,.]],.],[.,.]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[[.,.],[[.,.],[.,.]]],.] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
[[[[.,.],[.,.]],[.,.]],.] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
search for individual values
searching the database for the individual values of this statistic
Description
The minimal number of edges to add to make a graph Hamiltonian.
A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
core
Description
The core of a graph.
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!