Identifier
Values
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 0
([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 0
([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => 1
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 0
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 0
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(1,4),(2,3),(3,4)],5) => ([(0,2),(1,2)],3) => 1
([(0,1),(2,4),(3,4)],5) => ([(1,2)],3) => 2
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 0
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,2),(0,3),(1,2),(1,3)],4) => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 0
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(1,2),(2,3)],4) => 1
([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(2,5),(3,4),(4,5)],6) => ([(0,2),(1,2)],3) => 1
([(1,2),(3,5),(4,5)],6) => ([(1,2)],3) => 2
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 0
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
([(0,1),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 2
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(0,3),(1,2),(1,3)],4) => 0
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,3),(1,2)],4) => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 0
([(0,5),(1,4),(2,3)],6) => ([],3) => 3
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,3),(1,2),(2,3)],4) => 1
([(0,1),(2,5),(3,4),(4,5)],6) => ([(1,3),(2,3)],4) => 2
([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,3),(1,4),(2,3),(2,4)],5) => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 2
([(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => 0
([(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(3,6),(4,5),(5,6)],7) => ([(0,2),(1,2)],3) => 1
([(2,3),(4,6),(5,6)],7) => ([(1,2)],3) => 2
([(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => 0
([(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
([(1,2),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 2
([(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(0,3),(1,2),(1,3)],4) => 0
([(1,6),(2,6),(3,5),(4,5)],7) => ([(0,3),(1,2)],4) => 2
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 0
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => 2
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 0
>>> Load all 157 entries. <<<
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 1
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 0
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => 1
([(1,6),(2,5),(3,4)],7) => ([],3) => 3
([(2,6),(3,5),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => 1
([(1,2),(3,6),(4,5),(5,6)],7) => ([(1,3),(2,3)],4) => 2
([(0,3),(1,2),(4,6),(5,6)],7) => ([(2,3)],4) => 3
([(2,3),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 2
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => 2
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 0
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,3),(1,4),(2,3),(2,4)],5) => 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => ([(0,1),(2,4),(3,4)],5) => 2
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => 2
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 1
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 2
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,4),(2,3),(3,4)],5) => 2
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => ([(2,3),(2,4),(3,4)],5) => 3
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 2
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 2
search for individual values
searching the database for the individual values of this statistic
Description
The minimal number of edges to add to make a graph Hamiltonian.
A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Map
line graph
Description
The line graph of a graph.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.