Identifier
-
Mp00061:
Permutations
—to increasing tree⟶
Binary trees
Mp00011: Binary trees —to graph⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St001572: Graphs ⟶ ℤ
Values
[1] => [.,.] => ([],1) => ([(0,1)],2) => 0
[1,2] => [.,[.,.]] => ([(0,1)],2) => ([(0,1),(0,2),(1,2)],3) => 1
[2,1] => [[.,.],.] => ([(0,1)],2) => ([(0,1),(0,2),(1,2)],3) => 1
[1,2,3] => [.,[.,[.,.]]] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[1,3,2] => [.,[[.,.],.]] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[2,1,3] => [[.,.],[.,.]] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[2,3,1] => [[.,[.,.]],.] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[3,1,2] => [[.,.],[.,.]] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[3,2,1] => [[[.,.],.],.] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[1,2,3,4] => [.,[.,[.,[.,.]]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,4,3] => [.,[.,[[.,.],.]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,3,2,4] => [.,[[.,.],[.,.]]] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,3,4,2] => [.,[[.,[.,.]],.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,4,2,3] => [.,[[.,.],[.,.]]] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,4,3,2] => [.,[[[.,.],.],.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,1,3,4] => [[.,.],[.,[.,.]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,1,4,3] => [[.,.],[[.,.],.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,3,1,4] => [[.,[.,.]],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,3,4,1] => [[.,[.,[.,.]]],.] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,4,1,3] => [[.,[.,.]],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[2,4,3,1] => [[.,[[.,.],.]],.] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,1,2,4] => [[.,.],[.,[.,.]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,1,4,2] => [[.,.],[[.,.],.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,2,1,4] => [[[.,.],.],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,2,4,1] => [[[.,.],[.,.]],.] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[3,4,1,2] => [[.,[.,.]],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[3,4,2,1] => [[[.,[.,.]],.],.] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,1,2,3] => [[.,.],[.,[.,.]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,1,3,2] => [[.,.],[[.,.],.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,2,1,3] => [[[.,.],.],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,2,3,1] => [[[.,.],[.,.]],.] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[4,3,1,2] => [[[.,.],.],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[4,3,2,1] => [[[[.,.],.],.],.] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,4,5,3,2] => [.,[[[.,[.,.]],.],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[1,5,2,3,4] => [.,[[.,.],[.,[.,.]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,5,2,4,3] => [.,[[.,.],[[.,.],.]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,5,3,2,4] => [.,[[[.,.],.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,5,4,2,3] => [.,[[[.,.],.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,1,3,5,4] => [[.,.],[.,[[.,.],.]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,1,4,3,5] => [[.,.],[[.,.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,4,5,3] => [[.,.],[[.,[.,.]],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,1,5,3,4] => [[.,.],[[.,.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,1,5,4,3] => [[.,.],[[[.,.],.],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,3,1,5,4] => [[.,[.,.]],[[.,.],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,3,5,1,4] => [[.,[.,[.,.]]],[.,.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,3,5,4,1] => [[.,[.,[[.,.],.]]],.] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,4,1,5,3] => [[.,[.,.]],[[.,.],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,4,3,1,5] => [[.,[[.,.],.]],[.,.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,4,3,5,1] => [[.,[[.,.],[.,.]]],.] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,4,5,1,3] => [[.,[.,[.,.]]],[.,.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,4,5,3,1] => [[.,[[.,[.,.]],.]],.] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,5,1,4,3] => [[.,[.,.]],[[.,.],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,5,3,1,4] => [[.,[[.,.],.]],[.,.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,5,3,4,1] => [[.,[[.,.],[.,.]]],.] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[2,5,4,1,3] => [[.,[[.,.],.]],[.,.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[2,5,4,3,1] => [[.,[[[.,.],.],.]],.] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[3,1,2,4,5] => [[.,.],[.,[.,[.,.]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[3,1,2,5,4] => [[.,.],[.,[[.,.],.]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[3,1,4,2,5] => [[.,.],[[.,.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,4,5,2] => [[.,.],[[.,[.,.]],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[3,1,5,2,4] => [[.,.],[[.,.],[.,.]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,1,5,4,2] => [[.,.],[[[.,.],.],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[3,2,1,4,5] => [[[.,.],.],[.,[.,.]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[3,2,1,5,4] => [[[.,.],.],[[.,.],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[3,2,4,1,5] => [[[.,.],[.,.]],[.,.]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,4,5,1] => [[[.,.],[.,[.,.]]],.] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,5,1,4] => [[[.,.],[.,.]],[.,.]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,2,5,4,1] => [[[.,.],[[.,.],.]],.] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[3,4,1,5,2] => [[.,[.,.]],[[.,.],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[3,4,2,1,5] => [[[.,[.,.]],.],[.,.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[3,4,2,5,1] => [[[.,[.,.]],[.,.]],.] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 2
[3,4,5,1,2] => [[.,[.,[.,.]]],[.,.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[3,4,5,2,1] => [[[.,[.,[.,.]]],.],.] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[3,5,1,2,4] => [[.,[.,.]],[.,[.,.]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[3,5,1,4,2] => [[.,[.,.]],[[.,.],.]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
>>> Load all 153 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimal number of edges to remove to make a graph bipartite.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges, with leaves being ignored.
Map
cone
Description
The cone of a graph.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
Map
to increasing tree
Description
Sends a permutation to its associated increasing tree.
This tree is recursively obtained by sending the unique permutation of length 0 to the empty tree, and sending a permutation σ of length n≥1 to a root node with two subtrees L and R by splitting σ at the index σ−1(1), normalizing both sides again to permutations and sending the permutations on the left and on the right of σ−1(1) to the trees L and R, respectively.
This tree is recursively obtained by sending the unique permutation of length 0 to the empty tree, and sending a permutation σ of length n≥1 to a root node with two subtrees L and R by splitting σ at the index σ−1(1), normalizing both sides again to permutations and sending the permutations on the left and on the right of σ−1(1) to the trees L and R, respectively.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!