Identifier
Values
([],1) => ([],1) => ([],1) => 0
([(0,1)],2) => ([(0,1)],2) => ([(0,1)],2) => 0
([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 0
([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 0
([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 1
([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 0
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimal number of edges to add or remove to make a graph edge transitive.
A graph is edge transitive, if for any two edges, there is an automorphism that maps one edge to the other.
A graph is edge transitive, if for any two edges, there is an automorphism that maps one edge to the other.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
to poset
Description
Return the poset corresponding to the lattice.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!