Identifier
Values
[] => ([],1) => 0
[[]] => ([(0,1)],2) => 0
[[],[]] => ([(0,2),(1,2)],3) => 1
[[[]]] => ([(0,2),(1,2)],3) => 1
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => 3
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => 1
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => 1
[[[],[]]] => ([(0,3),(1,3),(2,3)],4) => 3
[[[[]]]] => ([(0,3),(1,2),(2,3)],4) => 1
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[[],[[],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[[],[[[]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[[[]],[[]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[[],[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[[[[]]],[]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[[[],[[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[[[[]],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => 3
[[[[[]]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[],[[[]],[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[],[[[],[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[],[[[[]]]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[[]],[[],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[]],[[[]]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[],[]],[[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[[]]],[[]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[[],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[[[]],[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[[[],[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[[[]]]],[]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
[[[],[],[[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[[],[[]],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[[],[[[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[[]],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[[[[]]],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4
[[[[],[[]]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[[[[]],[]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[[[[],[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
[[[[[[]]]]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[],[],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 6
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 6
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 6
[[],[],[],[[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 5
[[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 5
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 6
[[],[],[[]],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 5
[[],[],[[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 5
[[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 5
[[],[],[[],[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 5
[[],[],[[],[[]]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[],[[[]],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 5
[[],[],[[[[]]]]] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 3
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 6
[[],[[]],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 5
[[],[[]],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 5
[[],[[]],[[],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[]],[[[]]]] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 3
[[],[[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 5
[[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 5
[[],[[],[]],[[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[[]]],[[]]] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 3
[[],[[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 5
[[],[[],[[]]],[]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[[]],[]],[]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 5
[[],[[[[]]]],[]] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 3
[[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 6
[[],[[],[],[[]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 5
[[],[[],[[]],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 5
[[],[[],[[],[]]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
[[],[[],[[[]]]]] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 3
[[],[[[]],[],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 5
[[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 3
[[],[[[],[]],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 3
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimal number of edges to add or remove to make a graph vertex transitive.
A graph is vertex transitive if for any two edges there is an automorphism that maps one vertex to the other.
A graph is vertex transitive if for any two edges there is an automorphism that maps one vertex to the other.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!