Identifier
-
Mp00047:
Ordered trees
—to poset⟶
Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001588: Integer partitions ⟶ ℤ
Values
[] => ([],1) => [2] => [1,1] => 0
[[]] => ([(0,1)],2) => [3] => [1,1,1] => 0
[[],[]] => ([(0,2),(1,2)],3) => [3,2] => [2,2,1] => 1
[[[]]] => ([(0,2),(2,1)],3) => [4] => [1,1,1,1] => 0
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => [3,2,2,2] => [4,4,1] => 1
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => [7] => [1,1,1,1,1,1,1] => 0
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => [7] => [1,1,1,1,1,1,1] => 0
[[[],[]]] => ([(0,3),(1,3),(3,2)],4) => [4,2] => [2,2,1,1] => 1
[[[[]]]] => ([(0,3),(2,1),(3,2)],4) => [5] => [1,1,1,1,1] => 0
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => [3,2,2,2,2,2,2,2] => [8,8,1] => 1
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [7,6] => [2,2,2,2,2,2,1] => 1
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [7,6] => [2,2,2,2,2,2,1] => 1
[[],[[],[]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => [7,2,2] => [3,3,1,1,1,1,1] => 0
[[],[[[]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [5,4] => [2,2,2,2,1] => 1
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [7,6] => [2,2,2,2,2,2,1] => 1
[[[]],[[]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => [4,3,3] => [3,3,3,1] => 0
[[[],[]],[]] => ([(0,4),(1,3),(2,3),(3,4)],5) => [7,2,2] => [3,3,1,1,1,1,1] => 0
[[[[]]],[]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [5,4] => [2,2,2,2,1] => 1
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(4,3)],5) => [4,2,2,2] => [4,4,1,1] => 1
[[[],[[]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => [8] => [1,1,1,1,1,1,1,1] => 0
[[[[]],[]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => [8] => [1,1,1,1,1,1,1,1] => 0
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => [5,2] => [2,2,1,1,1] => 1
[[[[[]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => [1,1,1,1,1,1] => 0
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5,4,4,4] => [4,4,4,4,1] => 1
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5,4,4,4] => [4,4,4,4,1] => 1
[[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => [15] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[],[[[]],[]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => [15] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[],[[[],[]]]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => [5,4,2,2] => [4,4,2,2,1] => 1
[[],[[[[]]]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [11] => [1,1,1,1,1,1,1,1,1,1,1] => 0
[[[]],[[],[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => [6,4,3,3] => [4,4,4,2,1,1] => 1
[[[]],[[[]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [13] => [1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5,4,4,4] => [4,4,4,4,1] => 1
[[[],[]],[[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => [6,4,3,3] => [4,4,4,2,1,1] => 1
[[[[]]],[[]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [13] => [1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => [15] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[[]],[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => [15] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[[],[]]],[]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => [5,4,2,2] => [4,4,2,2,1] => 1
[[[[[]]]],[]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [11] => [1,1,1,1,1,1,1,1,1,1,1] => 0
[[[],[],[[]]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => [8,6] => [2,2,2,2,2,2,1,1] => 1
[[[],[[]],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => [8,6] => [2,2,2,2,2,2,1,1] => 1
[[[],[[],[]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => [8,2,2] => [3,3,1,1,1,1,1,1] => 0
[[[],[[[]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [6,4] => [2,2,2,2,1,1] => 1
[[[[]],[],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => [8,6] => [2,2,2,2,2,2,1,1] => 1
[[[[]],[[]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => [5,3,3] => [3,3,3,1,1] => 0
[[[[],[]],[]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => [8,2,2] => [3,3,1,1,1,1,1,1] => 0
[[[[[]]],[]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [6,4] => [2,2,2,2,1,1] => 1
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => [5,2,2,2] => [4,4,1,1,1] => 1
[[[[],[[]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [9] => [1,1,1,1,1,1,1,1,1] => 0
[[[[[]],[]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [9] => [1,1,1,1,1,1,1,1,1] => 0
[[[[[],[]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [6,2] => [2,2,1,1,1,1] => 1
[[[[[[]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => [1,1,1,1,1,1,1] => 0
[[],[[[[],[]]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7) => [11,2,2] => [3,3,1,1,1,1,1,1,1,1,1] => 0
[[],[[[[[]]]]]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => [7,6] => [2,2,2,2,2,2,1] => 1
[[[]],[[[[]]]]] => ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7) => [16] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[[]]],[[[]]]] => ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7) => [5,4,4,4] => [4,4,4,4,1] => 1
[[[[[]]]],[[]]] => ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7) => [16] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[[[],[]]]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7) => [11,2,2] => [3,3,1,1,1,1,1,1,1,1,1] => 0
[[[[[[]]]]],[]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => [7,6] => [2,2,2,2,2,2,1] => 1
[[[],[[],[[]]]]] => ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7) => [16] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[],[[[]],[]]]] => ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7) => [16] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[],[[[],[]]]]] => ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7) => [6,4,2,2] => [4,4,2,2,1,1] => 1
[[[],[[[[]]]]]] => ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7) => [12] => [1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[[]],[[],[]]]] => ([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7) => [6,5,3,3] => [4,4,4,2,2,1] => 1
[[[[]],[[[]]]]] => ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7) => [14] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[[],[]],[[]]]] => ([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7) => [6,5,3,3] => [4,4,4,2,2,1] => 1
[[[[[]]],[[]]]] => ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7) => [14] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[[],[[]]],[]]] => ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7) => [16] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[[[]],[]],[]]] => ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7) => [16] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[[[],[]]],[]]] => ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7) => [6,4,2,2] => [4,4,2,2,1,1] => 1
[[[[[[]]]],[]]] => ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7) => [12] => [1,1,1,1,1,1,1,1,1,1,1,1] => 0
[[[[],[],[[]]]]] => ([(0,6),(1,6),(2,3),(3,6),(4,5),(6,4)],7) => [9,6] => [2,2,2,2,2,2,1,1,1] => 1
[[[[],[[]],[]]]] => ([(0,6),(1,6),(2,3),(3,6),(4,5),(6,4)],7) => [9,6] => [2,2,2,2,2,2,1,1,1] => 1
[[[[],[[],[]]]]] => ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7) => [9,2,2] => [3,3,1,1,1,1,1,1,1] => 0
[[[[],[[[]]]]]] => ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7) => [7,4] => [2,2,2,2,1,1,1] => 1
[[[[[]],[],[]]]] => ([(0,6),(1,6),(2,3),(3,6),(4,5),(6,4)],7) => [9,6] => [2,2,2,2,2,2,1,1,1] => 1
[[[[[]],[[]]]]] => ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7) => [6,3,3] => [3,3,3,1,1,1] => 0
[[[[[],[]],[]]]] => ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7) => [9,2,2] => [3,3,1,1,1,1,1,1,1] => 0
[[[[[[]]],[]]]] => ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7) => [7,4] => [2,2,2,2,1,1,1] => 1
[[[[[],[],[]]]]] => ([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7) => [6,2,2,2] => [4,4,1,1,1,1] => 1
[[[[[],[[]]]]]] => ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7) => [10] => [1,1,1,1,1,1,1,1,1,1] => 0
[[[[[[]],[]]]]] => ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7) => [10] => [1,1,1,1,1,1,1,1,1,1] => 0
[[[[[[],[]]]]]] => ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7) => [7,2] => [2,2,1,1,1,1,1] => 1
[[[[[[[]]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of distinct odd parts smaller than the largest even part in an integer partition.
Map
rowmotion cycle type
Description
The cycle type of rowmotion on the order ideals of a poset.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
Map
to poset
Description
Return the poset obtained by interpreting the tree as the Hasse diagram of a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!