Identifier
Values
[(1,2)] => 1
[(1,2),(3,4)] => 1
[(1,3),(2,4)] => 1
[(1,4),(2,3)] => 2
[(1,2),(3,4),(5,6)] => 1
[(1,3),(2,4),(5,6)] => 1
[(1,4),(2,3),(5,6)] => 2
[(1,5),(2,3),(4,6)] => 2
[(1,6),(2,3),(4,5)] => 2
[(1,6),(2,4),(3,5)] => 2
[(1,5),(2,4),(3,6)] => 2
[(1,4),(2,5),(3,6)] => 1
[(1,3),(2,5),(4,6)] => 1
[(1,2),(3,5),(4,6)] => 1
[(1,2),(3,6),(4,5)] => 2
[(1,3),(2,6),(4,5)] => 2
[(1,4),(2,6),(3,5)] => 2
[(1,5),(2,6),(3,4)] => 2
[(1,6),(2,5),(3,4)] => 3
[(1,2),(3,4),(5,6),(7,8)] => 1
[(1,3),(2,4),(5,6),(7,8)] => 1
[(1,4),(2,3),(5,6),(7,8)] => 2
[(1,5),(2,3),(4,6),(7,8)] => 2
[(1,6),(2,3),(4,5),(7,8)] => 2
[(1,7),(2,3),(4,5),(6,8)] => 2
[(1,8),(2,3),(4,5),(6,7)] => 2
[(1,8),(2,4),(3,5),(6,7)] => 2
[(1,7),(2,4),(3,5),(6,8)] => 2
[(1,6),(2,4),(3,5),(7,8)] => 2
[(1,5),(2,4),(3,6),(7,8)] => 2
[(1,4),(2,5),(3,6),(7,8)] => 1
[(1,3),(2,5),(4,6),(7,8)] => 1
[(1,2),(3,5),(4,6),(7,8)] => 1
[(1,2),(3,6),(4,5),(7,8)] => 2
[(1,3),(2,6),(4,5),(7,8)] => 2
[(1,4),(2,6),(3,5),(7,8)] => 2
[(1,5),(2,6),(3,4),(7,8)] => 2
[(1,6),(2,5),(3,4),(7,8)] => 3
[(1,7),(2,5),(3,4),(6,8)] => 3
[(1,8),(2,5),(3,4),(6,7)] => 3
[(1,8),(2,6),(3,4),(5,7)] => 3
[(1,7),(2,6),(3,4),(5,8)] => 3
[(1,6),(2,7),(3,4),(5,8)] => 2
[(1,5),(2,7),(3,4),(6,8)] => 2
[(1,4),(2,7),(3,5),(6,8)] => 2
[(1,3),(2,7),(4,5),(6,8)] => 2
[(1,2),(3,7),(4,5),(6,8)] => 2
[(1,2),(3,8),(4,5),(6,7)] => 2
[(1,3),(2,8),(4,5),(6,7)] => 2
[(1,4),(2,8),(3,5),(6,7)] => 2
[(1,5),(2,8),(3,4),(6,7)] => 2
[(1,6),(2,8),(3,4),(5,7)] => 2
[(1,7),(2,8),(3,4),(5,6)] => 2
[(1,8),(2,7),(3,4),(5,6)] => 3
[(1,8),(2,7),(3,5),(4,6)] => 3
[(1,7),(2,8),(3,5),(4,6)] => 2
[(1,6),(2,8),(3,5),(4,7)] => 2
[(1,5),(2,8),(3,6),(4,7)] => 2
[(1,4),(2,8),(3,6),(5,7)] => 2
[(1,3),(2,8),(4,6),(5,7)] => 2
[(1,2),(3,8),(4,6),(5,7)] => 2
[(1,2),(3,7),(4,6),(5,8)] => 2
[(1,3),(2,7),(4,6),(5,8)] => 2
[(1,4),(2,7),(3,6),(5,8)] => 2
[(1,5),(2,7),(3,6),(4,8)] => 2
[(1,6),(2,7),(3,5),(4,8)] => 2
[(1,7),(2,6),(3,5),(4,8)] => 3
[(1,8),(2,6),(3,5),(4,7)] => 3
[(1,8),(2,5),(3,6),(4,7)] => 2
[(1,7),(2,5),(3,6),(4,8)] => 2
[(1,6),(2,5),(3,7),(4,8)] => 2
[(1,5),(2,6),(3,7),(4,8)] => 1
[(1,4),(2,6),(3,7),(5,8)] => 1
[(1,3),(2,6),(4,7),(5,8)] => 1
[(1,2),(3,6),(4,7),(5,8)] => 1
[(1,2),(3,5),(4,7),(6,8)] => 1
[(1,3),(2,5),(4,7),(6,8)] => 1
[(1,4),(2,5),(3,7),(6,8)] => 1
[(1,5),(2,4),(3,7),(6,8)] => 2
[(1,6),(2,4),(3,7),(5,8)] => 2
[(1,7),(2,4),(3,6),(5,8)] => 2
[(1,8),(2,4),(3,6),(5,7)] => 2
[(1,8),(2,3),(4,6),(5,7)] => 2
[(1,7),(2,3),(4,6),(5,8)] => 2
[(1,6),(2,3),(4,7),(5,8)] => 2
[(1,5),(2,3),(4,7),(6,8)] => 2
[(1,4),(2,3),(5,7),(6,8)] => 2
[(1,3),(2,4),(5,7),(6,8)] => 1
[(1,2),(3,4),(5,7),(6,8)] => 1
[(1,2),(3,4),(5,8),(6,7)] => 2
[(1,3),(2,4),(5,8),(6,7)] => 2
[(1,4),(2,3),(5,8),(6,7)] => 2
[(1,5),(2,3),(4,8),(6,7)] => 2
[(1,6),(2,3),(4,8),(5,7)] => 2
[(1,7),(2,3),(4,8),(5,6)] => 2
[(1,8),(2,3),(4,7),(5,6)] => 3
[(1,8),(2,4),(3,7),(5,6)] => 3
[(1,7),(2,4),(3,8),(5,6)] => 2
[(1,6),(2,4),(3,8),(5,7)] => 2
[(1,5),(2,4),(3,8),(6,7)] => 2
[(1,4),(2,5),(3,8),(6,7)] => 2
>>> Load all 1069 entries. <<<[(1,3),(2,5),(4,8),(6,7)] => 2
[(1,2),(3,5),(4,8),(6,7)] => 2
[(1,2),(3,6),(4,8),(5,7)] => 2
[(1,3),(2,6),(4,8),(5,7)] => 2
[(1,4),(2,6),(3,8),(5,7)] => 2
[(1,5),(2,6),(3,8),(4,7)] => 2
[(1,6),(2,5),(3,8),(4,7)] => 2
[(1,7),(2,5),(3,8),(4,6)] => 2
[(1,8),(2,5),(3,7),(4,6)] => 3
[(1,8),(2,6),(3,7),(4,5)] => 3
[(1,7),(2,6),(3,8),(4,5)] => 3
[(1,6),(2,7),(3,8),(4,5)] => 2
[(1,5),(2,7),(3,8),(4,6)] => 2
[(1,4),(2,7),(3,8),(5,6)] => 2
[(1,3),(2,7),(4,8),(5,6)] => 2
[(1,2),(3,7),(4,8),(5,6)] => 2
[(1,2),(3,8),(4,7),(5,6)] => 3
[(1,3),(2,8),(4,7),(5,6)] => 3
[(1,4),(2,8),(3,7),(5,6)] => 3
[(1,5),(2,8),(3,7),(4,6)] => 3
[(1,6),(2,8),(3,7),(4,5)] => 3
[(1,7),(2,8),(3,6),(4,5)] => 3
[(1,8),(2,7),(3,6),(4,5)] => 4
[(1,2),(3,4),(5,6),(7,8),(9,10)] => 1
[(1,3),(2,4),(5,6),(7,8),(9,10)] => 1
[(1,4),(2,3),(5,6),(7,8),(9,10)] => 2
[(1,5),(2,3),(4,6),(7,8),(9,10)] => 2
[(1,6),(2,3),(4,5),(7,8),(9,10)] => 2
[(1,7),(2,3),(4,5),(6,8),(9,10)] => 2
[(1,8),(2,3),(4,5),(6,7),(9,10)] => 2
[(1,9),(2,3),(4,5),(6,7),(8,10)] => 2
[(1,10),(2,3),(4,5),(6,7),(8,9)] => 2
[(1,10),(2,4),(3,5),(6,7),(8,9)] => 2
[(1,9),(2,4),(3,5),(6,7),(8,10)] => 2
[(1,8),(2,4),(3,5),(6,7),(9,10)] => 2
[(1,7),(2,4),(3,5),(6,8),(9,10)] => 2
[(1,6),(2,4),(3,5),(7,8),(9,10)] => 2
[(1,5),(2,4),(3,6),(7,8),(9,10)] => 2
[(1,4),(2,5),(3,6),(7,8),(9,10)] => 1
[(1,3),(2,5),(4,6),(7,8),(9,10)] => 1
[(1,2),(3,5),(4,6),(7,8),(9,10)] => 1
[(1,2),(3,6),(4,5),(7,8),(9,10)] => 2
[(1,3),(2,6),(4,5),(7,8),(9,10)] => 2
[(1,4),(2,6),(3,5),(7,8),(9,10)] => 2
[(1,5),(2,6),(3,4),(7,8),(9,10)] => 2
[(1,6),(2,5),(3,4),(7,8),(9,10)] => 3
[(1,7),(2,5),(3,4),(6,8),(9,10)] => 3
[(1,8),(2,5),(3,4),(6,7),(9,10)] => 3
[(1,9),(2,5),(3,4),(6,7),(8,10)] => 3
[(1,10),(2,5),(3,4),(6,7),(8,9)] => 3
[(1,10),(2,6),(3,4),(5,7),(8,9)] => 3
[(1,9),(2,6),(3,4),(5,7),(8,10)] => 3
[(1,8),(2,6),(3,4),(5,7),(9,10)] => 3
[(1,7),(2,6),(3,4),(5,8),(9,10)] => 3
[(1,6),(2,7),(3,4),(5,8),(9,10)] => 2
[(1,5),(2,7),(3,4),(6,8),(9,10)] => 2
[(1,4),(2,7),(3,5),(6,8),(9,10)] => 2
[(1,3),(2,7),(4,5),(6,8),(9,10)] => 2
[(1,2),(3,7),(4,5),(6,8),(9,10)] => 2
[(1,2),(3,8),(4,5),(6,7),(9,10)] => 2
[(1,3),(2,8),(4,5),(6,7),(9,10)] => 2
[(1,4),(2,8),(3,5),(6,7),(9,10)] => 2
[(1,5),(2,8),(3,4),(6,7),(9,10)] => 2
[(1,6),(2,8),(3,4),(5,7),(9,10)] => 2
[(1,7),(2,8),(3,4),(5,6),(9,10)] => 2
[(1,8),(2,7),(3,4),(5,6),(9,10)] => 3
[(1,9),(2,7),(3,4),(5,6),(8,10)] => 3
[(1,10),(2,7),(3,4),(5,6),(8,9)] => 3
[(1,10),(2,8),(3,4),(5,6),(7,9)] => 3
[(1,9),(2,8),(3,4),(5,6),(7,10)] => 3
[(1,8),(2,9),(3,4),(5,6),(7,10)] => 2
[(1,7),(2,9),(3,4),(5,6),(8,10)] => 2
[(1,6),(2,9),(3,4),(5,7),(8,10)] => 2
[(1,5),(2,9),(3,4),(6,7),(8,10)] => 2
[(1,4),(2,9),(3,5),(6,7),(8,10)] => 2
[(1,3),(2,9),(4,5),(6,7),(8,10)] => 2
[(1,2),(3,9),(4,5),(6,7),(8,10)] => 2
[(1,2),(3,10),(4,5),(6,7),(8,9)] => 2
[(1,3),(2,10),(4,5),(6,7),(8,9)] => 2
[(1,4),(2,10),(3,5),(6,7),(8,9)] => 2
[(1,5),(2,10),(3,4),(6,7),(8,9)] => 2
[(1,6),(2,10),(3,4),(5,7),(8,9)] => 2
[(1,7),(2,10),(3,4),(5,6),(8,9)] => 2
[(1,8),(2,10),(3,4),(5,6),(7,9)] => 2
[(1,9),(2,10),(3,4),(5,6),(7,8)] => 2
[(1,10),(2,9),(3,4),(5,6),(7,8)] => 3
[(1,10),(2,9),(3,5),(4,6),(7,8)] => 3
[(1,9),(2,10),(3,5),(4,6),(7,8)] => 2
[(1,8),(2,10),(3,5),(4,6),(7,9)] => 2
[(1,7),(2,10),(3,5),(4,6),(8,9)] => 2
[(1,6),(2,10),(3,5),(4,7),(8,9)] => 2
[(1,5),(2,10),(3,6),(4,7),(8,9)] => 2
[(1,4),(2,10),(3,6),(5,7),(8,9)] => 2
[(1,3),(2,10),(4,6),(5,7),(8,9)] => 2
[(1,2),(3,10),(4,6),(5,7),(8,9)] => 2
[(1,2),(3,9),(4,6),(5,7),(8,10)] => 2
[(1,3),(2,9),(4,6),(5,7),(8,10)] => 2
[(1,4),(2,9),(3,6),(5,7),(8,10)] => 2
[(1,5),(2,9),(3,6),(4,7),(8,10)] => 2
[(1,6),(2,9),(3,5),(4,7),(8,10)] => 2
[(1,7),(2,9),(3,5),(4,6),(8,10)] => 2
[(1,8),(2,9),(3,5),(4,6),(7,10)] => 2
[(1,9),(2,8),(3,5),(4,6),(7,10)] => 3
[(1,10),(2,8),(3,5),(4,6),(7,9)] => 3
[(1,10),(2,7),(3,5),(4,6),(8,9)] => 3
[(1,9),(2,7),(3,5),(4,6),(8,10)] => 3
[(1,8),(2,7),(3,5),(4,6),(9,10)] => 3
[(1,7),(2,8),(3,5),(4,6),(9,10)] => 2
[(1,6),(2,8),(3,5),(4,7),(9,10)] => 2
[(1,5),(2,8),(3,6),(4,7),(9,10)] => 2
[(1,4),(2,8),(3,6),(5,7),(9,10)] => 2
[(1,3),(2,8),(4,6),(5,7),(9,10)] => 2
[(1,2),(3,8),(4,6),(5,7),(9,10)] => 2
[(1,2),(3,7),(4,6),(5,8),(9,10)] => 2
[(1,3),(2,7),(4,6),(5,8),(9,10)] => 2
[(1,4),(2,7),(3,6),(5,8),(9,10)] => 2
[(1,5),(2,7),(3,6),(4,8),(9,10)] => 2
[(1,6),(2,7),(3,5),(4,8),(9,10)] => 2
[(1,7),(2,6),(3,5),(4,8),(9,10)] => 3
[(1,8),(2,6),(3,5),(4,7),(9,10)] => 3
[(1,9),(2,6),(3,5),(4,7),(8,10)] => 3
[(1,10),(2,6),(3,5),(4,7),(8,9)] => 3
[(1,10),(2,5),(3,6),(4,7),(8,9)] => 2
[(1,9),(2,5),(3,6),(4,7),(8,10)] => 2
[(1,8),(2,5),(3,6),(4,7),(9,10)] => 2
[(1,7),(2,5),(3,6),(4,8),(9,10)] => 2
[(1,6),(2,5),(3,7),(4,8),(9,10)] => 2
[(1,5),(2,6),(3,7),(4,8),(9,10)] => 1
[(1,4),(2,6),(3,7),(5,8),(9,10)] => 1
[(1,3),(2,6),(4,7),(5,8),(9,10)] => 1
[(1,2),(3,6),(4,7),(5,8),(9,10)] => 1
[(1,2),(3,5),(4,7),(6,8),(9,10)] => 1
[(1,3),(2,5),(4,7),(6,8),(9,10)] => 1
[(1,4),(2,5),(3,7),(6,8),(9,10)] => 1
[(1,5),(2,4),(3,7),(6,8),(9,10)] => 2
[(1,6),(2,4),(3,7),(5,8),(9,10)] => 2
[(1,7),(2,4),(3,6),(5,8),(9,10)] => 2
[(1,8),(2,4),(3,6),(5,7),(9,10)] => 2
[(1,9),(2,4),(3,6),(5,7),(8,10)] => 2
[(1,10),(2,4),(3,6),(5,7),(8,9)] => 2
[(1,10),(2,3),(4,6),(5,7),(8,9)] => 2
[(1,9),(2,3),(4,6),(5,7),(8,10)] => 2
[(1,8),(2,3),(4,6),(5,7),(9,10)] => 2
[(1,7),(2,3),(4,6),(5,8),(9,10)] => 2
[(1,6),(2,3),(4,7),(5,8),(9,10)] => 2
[(1,5),(2,3),(4,7),(6,8),(9,10)] => 2
[(1,4),(2,3),(5,7),(6,8),(9,10)] => 2
[(1,3),(2,4),(5,7),(6,8),(9,10)] => 1
[(1,2),(3,4),(5,7),(6,8),(9,10)] => 1
[(1,2),(3,4),(5,8),(6,7),(9,10)] => 2
[(1,3),(2,4),(5,8),(6,7),(9,10)] => 2
[(1,4),(2,3),(5,8),(6,7),(9,10)] => 2
[(1,5),(2,3),(4,8),(6,7),(9,10)] => 2
[(1,6),(2,3),(4,8),(5,7),(9,10)] => 2
[(1,7),(2,3),(4,8),(5,6),(9,10)] => 2
[(1,8),(2,3),(4,7),(5,6),(9,10)] => 3
[(1,9),(2,3),(4,7),(5,6),(8,10)] => 3
[(1,10),(2,3),(4,7),(5,6),(8,9)] => 3
[(1,10),(2,4),(3,7),(5,6),(8,9)] => 3
[(1,9),(2,4),(3,7),(5,6),(8,10)] => 3
[(1,8),(2,4),(3,7),(5,6),(9,10)] => 3
[(1,7),(2,4),(3,8),(5,6),(9,10)] => 2
[(1,6),(2,4),(3,8),(5,7),(9,10)] => 2
[(1,5),(2,4),(3,8),(6,7),(9,10)] => 2
[(1,4),(2,5),(3,8),(6,7),(9,10)] => 2
[(1,3),(2,5),(4,8),(6,7),(9,10)] => 2
[(1,2),(3,5),(4,8),(6,7),(9,10)] => 2
[(1,2),(3,6),(4,8),(5,7),(9,10)] => 2
[(1,3),(2,6),(4,8),(5,7),(9,10)] => 2
[(1,4),(2,6),(3,8),(5,7),(9,10)] => 2
[(1,5),(2,6),(3,8),(4,7),(9,10)] => 2
[(1,6),(2,5),(3,8),(4,7),(9,10)] => 2
[(1,7),(2,5),(3,8),(4,6),(9,10)] => 2
[(1,8),(2,5),(3,7),(4,6),(9,10)] => 3
[(1,9),(2,5),(3,7),(4,6),(8,10)] => 3
[(1,10),(2,5),(3,7),(4,6),(8,9)] => 3
[(1,10),(2,6),(3,7),(4,5),(8,9)] => 3
[(1,9),(2,6),(3,7),(4,5),(8,10)] => 3
[(1,8),(2,6),(3,7),(4,5),(9,10)] => 3
[(1,7),(2,6),(3,8),(4,5),(9,10)] => 3
[(1,6),(2,7),(3,8),(4,5),(9,10)] => 2
[(1,5),(2,7),(3,8),(4,6),(9,10)] => 2
[(1,4),(2,7),(3,8),(5,6),(9,10)] => 2
[(1,3),(2,7),(4,8),(5,6),(9,10)] => 2
[(1,2),(3,7),(4,8),(5,6),(9,10)] => 2
[(1,2),(3,8),(4,7),(5,6),(9,10)] => 3
[(1,3),(2,8),(4,7),(5,6),(9,10)] => 3
[(1,4),(2,8),(3,7),(5,6),(9,10)] => 3
[(1,5),(2,8),(3,7),(4,6),(9,10)] => 3
[(1,6),(2,8),(3,7),(4,5),(9,10)] => 3
[(1,7),(2,8),(3,6),(4,5),(9,10)] => 3
[(1,8),(2,7),(3,6),(4,5),(9,10)] => 4
[(1,9),(2,7),(3,6),(4,5),(8,10)] => 4
[(1,10),(2,7),(3,6),(4,5),(8,9)] => 4
[(1,10),(2,8),(3,6),(4,5),(7,9)] => 4
[(1,9),(2,8),(3,6),(4,5),(7,10)] => 4
[(1,8),(2,9),(3,6),(4,5),(7,10)] => 3
[(1,7),(2,9),(3,6),(4,5),(8,10)] => 3
[(1,6),(2,9),(3,7),(4,5),(8,10)] => 3
[(1,5),(2,9),(3,7),(4,6),(8,10)] => 3
[(1,4),(2,9),(3,7),(5,6),(8,10)] => 3
[(1,3),(2,9),(4,7),(5,6),(8,10)] => 3
[(1,2),(3,9),(4,7),(5,6),(8,10)] => 3
[(1,2),(3,10),(4,7),(5,6),(8,9)] => 3
[(1,3),(2,10),(4,7),(5,6),(8,9)] => 3
[(1,4),(2,10),(3,7),(5,6),(8,9)] => 3
[(1,5),(2,10),(3,7),(4,6),(8,9)] => 3
[(1,6),(2,10),(3,7),(4,5),(8,9)] => 3
[(1,7),(2,10),(3,6),(4,5),(8,9)] => 3
[(1,8),(2,10),(3,6),(4,5),(7,9)] => 3
[(1,9),(2,10),(3,6),(4,5),(7,8)] => 3
[(1,10),(2,9),(3,6),(4,5),(7,8)] => 4
[(1,10),(2,9),(3,7),(4,5),(6,8)] => 4
[(1,9),(2,10),(3,7),(4,5),(6,8)] => 3
[(1,8),(2,10),(3,7),(4,5),(6,9)] => 3
[(1,7),(2,10),(3,8),(4,5),(6,9)] => 3
[(1,6),(2,10),(3,8),(4,5),(7,9)] => 3
[(1,5),(2,10),(3,8),(4,6),(7,9)] => 3
[(1,4),(2,10),(3,8),(5,6),(7,9)] => 3
[(1,3),(2,10),(4,8),(5,6),(7,9)] => 3
[(1,2),(3,10),(4,8),(5,6),(7,9)] => 3
[(1,2),(3,9),(4,8),(5,6),(7,10)] => 3
[(1,3),(2,9),(4,8),(5,6),(7,10)] => 3
[(1,4),(2,9),(3,8),(5,6),(7,10)] => 3
[(1,5),(2,9),(3,8),(4,6),(7,10)] => 3
[(1,6),(2,9),(3,8),(4,5),(7,10)] => 3
[(1,7),(2,9),(3,8),(4,5),(6,10)] => 3
[(1,8),(2,9),(3,7),(4,5),(6,10)] => 3
[(1,9),(2,8),(3,7),(4,5),(6,10)] => 4
[(1,10),(2,8),(3,7),(4,5),(6,9)] => 4
[(1,10),(2,7),(3,8),(4,5),(6,9)] => 3
[(1,9),(2,7),(3,8),(4,5),(6,10)] => 3
[(1,8),(2,7),(3,9),(4,5),(6,10)] => 3
[(1,7),(2,8),(3,9),(4,5),(6,10)] => 2
[(1,6),(2,8),(3,9),(4,5),(7,10)] => 2
[(1,5),(2,8),(3,9),(4,6),(7,10)] => 2
[(1,4),(2,8),(3,9),(5,6),(7,10)] => 2
[(1,3),(2,8),(4,9),(5,6),(7,10)] => 2
[(1,2),(3,8),(4,9),(5,6),(7,10)] => 2
[(1,2),(3,7),(4,9),(5,6),(8,10)] => 2
[(1,3),(2,7),(4,9),(5,6),(8,10)] => 2
[(1,4),(2,7),(3,9),(5,6),(8,10)] => 2
[(1,5),(2,7),(3,9),(4,6),(8,10)] => 2
[(1,6),(2,7),(3,9),(4,5),(8,10)] => 2
[(1,7),(2,6),(3,9),(4,5),(8,10)] => 3
[(1,8),(2,6),(3,9),(4,5),(7,10)] => 3
[(1,9),(2,6),(3,8),(4,5),(7,10)] => 3
[(1,10),(2,6),(3,8),(4,5),(7,9)] => 3
[(1,10),(2,5),(3,8),(4,6),(7,9)] => 3
[(1,9),(2,5),(3,8),(4,6),(7,10)] => 3
[(1,8),(2,5),(3,9),(4,6),(7,10)] => 2
[(1,7),(2,5),(3,9),(4,6),(8,10)] => 2
[(1,6),(2,5),(3,9),(4,7),(8,10)] => 2
[(1,5),(2,6),(3,9),(4,7),(8,10)] => 2
[(1,4),(2,6),(3,9),(5,7),(8,10)] => 2
[(1,3),(2,6),(4,9),(5,7),(8,10)] => 2
[(1,2),(3,6),(4,9),(5,7),(8,10)] => 2
[(1,2),(3,5),(4,9),(6,7),(8,10)] => 2
[(1,3),(2,5),(4,9),(6,7),(8,10)] => 2
[(1,4),(2,5),(3,9),(6,7),(8,10)] => 2
[(1,5),(2,4),(3,9),(6,7),(8,10)] => 2
[(1,6),(2,4),(3,9),(5,7),(8,10)] => 2
[(1,7),(2,4),(3,9),(5,6),(8,10)] => 2
[(1,8),(2,4),(3,9),(5,6),(7,10)] => 2
[(1,9),(2,4),(3,8),(5,6),(7,10)] => 3
[(1,10),(2,4),(3,8),(5,6),(7,9)] => 3
[(1,10),(2,3),(4,8),(5,6),(7,9)] => 3
[(1,9),(2,3),(4,8),(5,6),(7,10)] => 3
[(1,8),(2,3),(4,9),(5,6),(7,10)] => 2
[(1,7),(2,3),(4,9),(5,6),(8,10)] => 2
[(1,6),(2,3),(4,9),(5,7),(8,10)] => 2
[(1,5),(2,3),(4,9),(6,7),(8,10)] => 2
[(1,4),(2,3),(5,9),(6,7),(8,10)] => 2
[(1,3),(2,4),(5,9),(6,7),(8,10)] => 2
[(1,2),(3,4),(5,9),(6,7),(8,10)] => 2
[(1,2),(3,4),(5,10),(6,7),(8,9)] => 2
[(1,3),(2,4),(5,10),(6,7),(8,9)] => 2
[(1,4),(2,3),(5,10),(6,7),(8,9)] => 2
[(1,5),(2,3),(4,10),(6,7),(8,9)] => 2
[(1,6),(2,3),(4,10),(5,7),(8,9)] => 2
[(1,7),(2,3),(4,10),(5,6),(8,9)] => 2
[(1,8),(2,3),(4,10),(5,6),(7,9)] => 2
[(1,9),(2,3),(4,10),(5,6),(7,8)] => 2
[(1,10),(2,3),(4,9),(5,6),(7,8)] => 3
[(1,10),(2,4),(3,9),(5,6),(7,8)] => 3
[(1,9),(2,4),(3,10),(5,6),(7,8)] => 2
[(1,8),(2,4),(3,10),(5,6),(7,9)] => 2
[(1,7),(2,4),(3,10),(5,6),(8,9)] => 2
[(1,6),(2,4),(3,10),(5,7),(8,9)] => 2
[(1,5),(2,4),(3,10),(6,7),(8,9)] => 2
[(1,4),(2,5),(3,10),(6,7),(8,9)] => 2
[(1,3),(2,5),(4,10),(6,7),(8,9)] => 2
[(1,2),(3,5),(4,10),(6,7),(8,9)] => 2
[(1,2),(3,6),(4,10),(5,7),(8,9)] => 2
[(1,3),(2,6),(4,10),(5,7),(8,9)] => 2
[(1,4),(2,6),(3,10),(5,7),(8,9)] => 2
[(1,5),(2,6),(3,10),(4,7),(8,9)] => 2
[(1,6),(2,5),(3,10),(4,7),(8,9)] => 2
[(1,7),(2,5),(3,10),(4,6),(8,9)] => 2
[(1,8),(2,5),(3,10),(4,6),(7,9)] => 2
[(1,9),(2,5),(3,10),(4,6),(7,8)] => 2
[(1,10),(2,5),(3,9),(4,6),(7,8)] => 3
[(1,10),(2,6),(3,9),(4,5),(7,8)] => 3
[(1,9),(2,6),(3,10),(4,5),(7,8)] => 3
[(1,8),(2,6),(3,10),(4,5),(7,9)] => 3
[(1,7),(2,6),(3,10),(4,5),(8,9)] => 3
[(1,6),(2,7),(3,10),(4,5),(8,9)] => 2
[(1,5),(2,7),(3,10),(4,6),(8,9)] => 2
[(1,4),(2,7),(3,10),(5,6),(8,9)] => 2
[(1,3),(2,7),(4,10),(5,6),(8,9)] => 2
[(1,2),(3,7),(4,10),(5,6),(8,9)] => 2
[(1,2),(3,8),(4,10),(5,6),(7,9)] => 2
[(1,3),(2,8),(4,10),(5,6),(7,9)] => 2
[(1,4),(2,8),(3,10),(5,6),(7,9)] => 2
[(1,5),(2,8),(3,10),(4,6),(7,9)] => 2
[(1,6),(2,8),(3,10),(4,5),(7,9)] => 2
[(1,7),(2,8),(3,10),(4,5),(6,9)] => 2
[(1,8),(2,7),(3,10),(4,5),(6,9)] => 3
[(1,9),(2,7),(3,10),(4,5),(6,8)] => 3
[(1,10),(2,7),(3,9),(4,5),(6,8)] => 3
[(1,10),(2,8),(3,9),(4,5),(6,7)] => 3
[(1,9),(2,8),(3,10),(4,5),(6,7)] => 3
[(1,8),(2,9),(3,10),(4,5),(6,7)] => 2
[(1,7),(2,9),(3,10),(4,5),(6,8)] => 2
[(1,6),(2,9),(3,10),(4,5),(7,8)] => 2
[(1,5),(2,9),(3,10),(4,6),(7,8)] => 2
[(1,4),(2,9),(3,10),(5,6),(7,8)] => 2
[(1,3),(2,9),(4,10),(5,6),(7,8)] => 2
[(1,2),(3,9),(4,10),(5,6),(7,8)] => 2
[(1,2),(3,10),(4,9),(5,6),(7,8)] => 3
[(1,3),(2,10),(4,9),(5,6),(7,8)] => 3
[(1,4),(2,10),(3,9),(5,6),(7,8)] => 3
[(1,5),(2,10),(3,9),(4,6),(7,8)] => 3
[(1,6),(2,10),(3,9),(4,5),(7,8)] => 3
[(1,7),(2,10),(3,9),(4,5),(6,8)] => 3
[(1,8),(2,10),(3,9),(4,5),(6,7)] => 3
[(1,9),(2,10),(3,8),(4,5),(6,7)] => 3
[(1,10),(2,9),(3,8),(4,5),(6,7)] => 4
[(1,10),(2,9),(3,8),(4,6),(5,7)] => 4
[(1,9),(2,10),(3,8),(4,6),(5,7)] => 3
[(1,8),(2,10),(3,9),(4,6),(5,7)] => 3
[(1,7),(2,10),(3,9),(4,6),(5,8)] => 3
[(1,6),(2,10),(3,9),(4,7),(5,8)] => 3
[(1,5),(2,10),(3,9),(4,7),(6,8)] => 3
[(1,4),(2,10),(3,9),(5,7),(6,8)] => 3
[(1,3),(2,10),(4,9),(5,7),(6,8)] => 3
[(1,2),(3,10),(4,9),(5,7),(6,8)] => 3
[(1,2),(3,9),(4,10),(5,7),(6,8)] => 2
[(1,3),(2,9),(4,10),(5,7),(6,8)] => 2
[(1,4),(2,9),(3,10),(5,7),(6,8)] => 2
[(1,5),(2,9),(3,10),(4,7),(6,8)] => 2
[(1,6),(2,9),(3,10),(4,7),(5,8)] => 2
[(1,7),(2,9),(3,10),(4,6),(5,8)] => 2
[(1,8),(2,9),(3,10),(4,6),(5,7)] => 2
[(1,9),(2,8),(3,10),(4,6),(5,7)] => 3
[(1,10),(2,8),(3,9),(4,6),(5,7)] => 3
[(1,10),(2,7),(3,9),(4,6),(5,8)] => 3
[(1,9),(2,7),(3,10),(4,6),(5,8)] => 3
[(1,8),(2,7),(3,10),(4,6),(5,9)] => 3
[(1,7),(2,8),(3,10),(4,6),(5,9)] => 2
[(1,6),(2,8),(3,10),(4,7),(5,9)] => 2
[(1,5),(2,8),(3,10),(4,7),(6,9)] => 2
[(1,4),(2,8),(3,10),(5,7),(6,9)] => 2
[(1,3),(2,8),(4,10),(5,7),(6,9)] => 2
[(1,2),(3,8),(4,10),(5,7),(6,9)] => 2
[(1,2),(3,7),(4,10),(5,8),(6,9)] => 2
[(1,3),(2,7),(4,10),(5,8),(6,9)] => 2
[(1,4),(2,7),(3,10),(5,8),(6,9)] => 2
[(1,5),(2,7),(3,10),(4,8),(6,9)] => 2
[(1,6),(2,7),(3,10),(4,8),(5,9)] => 2
[(1,7),(2,6),(3,10),(4,8),(5,9)] => 2
[(1,8),(2,6),(3,10),(4,7),(5,9)] => 2
[(1,9),(2,6),(3,10),(4,7),(5,8)] => 2
[(1,10),(2,6),(3,9),(4,7),(5,8)] => 3
[(1,10),(2,5),(3,9),(4,7),(6,8)] => 3
[(1,9),(2,5),(3,10),(4,7),(6,8)] => 2
[(1,8),(2,5),(3,10),(4,7),(6,9)] => 2
[(1,7),(2,5),(3,10),(4,8),(6,9)] => 2
[(1,6),(2,5),(3,10),(4,8),(7,9)] => 2
[(1,5),(2,6),(3,10),(4,8),(7,9)] => 2
[(1,4),(2,6),(3,10),(5,8),(7,9)] => 2
[(1,3),(2,6),(4,10),(5,8),(7,9)] => 2
[(1,2),(3,6),(4,10),(5,8),(7,9)] => 2
[(1,2),(3,5),(4,10),(6,8),(7,9)] => 2
[(1,3),(2,5),(4,10),(6,8),(7,9)] => 2
[(1,4),(2,5),(3,10),(6,8),(7,9)] => 2
[(1,5),(2,4),(3,10),(6,8),(7,9)] => 2
[(1,6),(2,4),(3,10),(5,8),(7,9)] => 2
[(1,7),(2,4),(3,10),(5,8),(6,9)] => 2
[(1,8),(2,4),(3,10),(5,7),(6,9)] => 2
[(1,9),(2,4),(3,10),(5,7),(6,8)] => 2
[(1,10),(2,4),(3,9),(5,7),(6,8)] => 3
[(1,10),(2,3),(4,9),(5,7),(6,8)] => 3
[(1,9),(2,3),(4,10),(5,7),(6,8)] => 2
[(1,8),(2,3),(4,10),(5,7),(6,9)] => 2
[(1,7),(2,3),(4,10),(5,8),(6,9)] => 2
[(1,6),(2,3),(4,10),(5,8),(7,9)] => 2
[(1,5),(2,3),(4,10),(6,8),(7,9)] => 2
[(1,4),(2,3),(5,10),(6,8),(7,9)] => 2
[(1,3),(2,4),(5,10),(6,8),(7,9)] => 2
[(1,2),(3,4),(5,10),(6,8),(7,9)] => 2
[(1,2),(3,4),(5,9),(6,8),(7,10)] => 2
[(1,3),(2,4),(5,9),(6,8),(7,10)] => 2
[(1,4),(2,3),(5,9),(6,8),(7,10)] => 2
[(1,5),(2,3),(4,9),(6,8),(7,10)] => 2
[(1,6),(2,3),(4,9),(5,8),(7,10)] => 2
[(1,7),(2,3),(4,9),(5,8),(6,10)] => 2
[(1,8),(2,3),(4,9),(5,7),(6,10)] => 2
[(1,9),(2,3),(4,8),(5,7),(6,10)] => 3
[(1,10),(2,3),(4,8),(5,7),(6,9)] => 3
[(1,10),(2,4),(3,8),(5,7),(6,9)] => 3
[(1,9),(2,4),(3,8),(5,7),(6,10)] => 3
[(1,8),(2,4),(3,9),(5,7),(6,10)] => 2
[(1,7),(2,4),(3,9),(5,8),(6,10)] => 2
[(1,6),(2,4),(3,9),(5,8),(7,10)] => 2
[(1,5),(2,4),(3,9),(6,8),(7,10)] => 2
[(1,4),(2,5),(3,9),(6,8),(7,10)] => 2
[(1,3),(2,5),(4,9),(6,8),(7,10)] => 2
[(1,2),(3,5),(4,9),(6,8),(7,10)] => 2
[(1,2),(3,6),(4,9),(5,8),(7,10)] => 2
[(1,3),(2,6),(4,9),(5,8),(7,10)] => 2
[(1,4),(2,6),(3,9),(5,8),(7,10)] => 2
[(1,5),(2,6),(3,9),(4,8),(7,10)] => 2
[(1,6),(2,5),(3,9),(4,8),(7,10)] => 2
[(1,7),(2,5),(3,9),(4,8),(6,10)] => 2
[(1,8),(2,5),(3,9),(4,7),(6,10)] => 2
[(1,9),(2,5),(3,8),(4,7),(6,10)] => 3
[(1,10),(2,5),(3,8),(4,7),(6,9)] => 3
[(1,10),(2,6),(3,8),(4,7),(5,9)] => 3
[(1,9),(2,6),(3,8),(4,7),(5,10)] => 3
[(1,8),(2,6),(3,9),(4,7),(5,10)] => 2
[(1,7),(2,6),(3,9),(4,8),(5,10)] => 2
[(1,6),(2,7),(3,9),(4,8),(5,10)] => 2
[(1,5),(2,7),(3,9),(4,8),(6,10)] => 2
[(1,4),(2,7),(3,9),(5,8),(6,10)] => 2
[(1,3),(2,7),(4,9),(5,8),(6,10)] => 2
[(1,2),(3,7),(4,9),(5,8),(6,10)] => 2
[(1,2),(3,8),(4,9),(5,7),(6,10)] => 2
[(1,3),(2,8),(4,9),(5,7),(6,10)] => 2
[(1,4),(2,8),(3,9),(5,7),(6,10)] => 2
[(1,5),(2,8),(3,9),(4,7),(6,10)] => 2
[(1,6),(2,8),(3,9),(4,7),(5,10)] => 2
[(1,7),(2,8),(3,9),(4,6),(5,10)] => 2
[(1,8),(2,7),(3,9),(4,6),(5,10)] => 3
[(1,9),(2,7),(3,8),(4,6),(5,10)] => 3
[(1,10),(2,7),(3,8),(4,6),(5,9)] => 3
[(1,10),(2,8),(3,7),(4,6),(5,9)] => 4
[(1,9),(2,8),(3,7),(4,6),(5,10)] => 4
[(1,8),(2,9),(3,7),(4,6),(5,10)] => 3
[(1,7),(2,9),(3,8),(4,6),(5,10)] => 3
[(1,6),(2,9),(3,8),(4,7),(5,10)] => 3
[(1,5),(2,9),(3,8),(4,7),(6,10)] => 3
[(1,4),(2,9),(3,8),(5,7),(6,10)] => 3
[(1,3),(2,9),(4,8),(5,7),(6,10)] => 3
[(1,2),(3,9),(4,8),(5,7),(6,10)] => 3
[(1,2),(3,10),(4,8),(5,7),(6,9)] => 3
[(1,3),(2,10),(4,8),(5,7),(6,9)] => 3
[(1,4),(2,10),(3,8),(5,7),(6,9)] => 3
[(1,5),(2,10),(3,8),(4,7),(6,9)] => 3
[(1,6),(2,10),(3,8),(4,7),(5,9)] => 3
[(1,7),(2,10),(3,8),(4,6),(5,9)] => 3
[(1,8),(2,10),(3,7),(4,6),(5,9)] => 3
[(1,9),(2,10),(3,7),(4,6),(5,8)] => 3
[(1,10),(2,9),(3,7),(4,6),(5,8)] => 4
[(1,10),(2,9),(3,6),(4,7),(5,8)] => 3
[(1,9),(2,10),(3,6),(4,7),(5,8)] => 2
[(1,8),(2,10),(3,6),(4,7),(5,9)] => 2
[(1,7),(2,10),(3,6),(4,8),(5,9)] => 2
[(1,6),(2,10),(3,7),(4,8),(5,9)] => 2
[(1,5),(2,10),(3,7),(4,8),(6,9)] => 2
[(1,4),(2,10),(3,7),(5,8),(6,9)] => 2
[(1,3),(2,10),(4,7),(5,8),(6,9)] => 2
[(1,2),(3,10),(4,7),(5,8),(6,9)] => 2
[(1,2),(3,9),(4,7),(5,8),(6,10)] => 2
[(1,3),(2,9),(4,7),(5,8),(6,10)] => 2
[(1,4),(2,9),(3,7),(5,8),(6,10)] => 2
[(1,5),(2,9),(3,7),(4,8),(6,10)] => 2
[(1,6),(2,9),(3,7),(4,8),(5,10)] => 2
[(1,7),(2,9),(3,6),(4,8),(5,10)] => 2
[(1,8),(2,9),(3,6),(4,7),(5,10)] => 2
[(1,9),(2,8),(3,6),(4,7),(5,10)] => 3
[(1,10),(2,8),(3,6),(4,7),(5,9)] => 3
[(1,10),(2,7),(3,6),(4,8),(5,9)] => 3
[(1,9),(2,7),(3,6),(4,8),(5,10)] => 3
[(1,8),(2,7),(3,6),(4,9),(5,10)] => 3
[(1,7),(2,8),(3,6),(4,9),(5,10)] => 2
[(1,6),(2,8),(3,7),(4,9),(5,10)] => 2
[(1,5),(2,8),(3,7),(4,9),(6,10)] => 2
[(1,4),(2,8),(3,7),(5,9),(6,10)] => 2
[(1,3),(2,8),(4,7),(5,9),(6,10)] => 2
[(1,2),(3,8),(4,7),(5,9),(6,10)] => 2
[(1,2),(3,7),(4,8),(5,9),(6,10)] => 1
[(1,3),(2,7),(4,8),(5,9),(6,10)] => 1
[(1,4),(2,7),(3,8),(5,9),(6,10)] => 1
[(1,5),(2,7),(3,8),(4,9),(6,10)] => 1
[(1,6),(2,7),(3,8),(4,9),(5,10)] => 1
[(1,7),(2,6),(3,8),(4,9),(5,10)] => 2
[(1,8),(2,6),(3,7),(4,9),(5,10)] => 2
[(1,9),(2,6),(3,7),(4,8),(5,10)] => 2
[(1,10),(2,6),(3,7),(4,8),(5,9)] => 2
[(1,10),(2,5),(3,7),(4,8),(6,9)] => 2
[(1,9),(2,5),(3,7),(4,8),(6,10)] => 2
[(1,8),(2,5),(3,7),(4,9),(6,10)] => 2
[(1,7),(2,5),(3,8),(4,9),(6,10)] => 2
[(1,6),(2,5),(3,8),(4,9),(7,10)] => 2
[(1,5),(2,6),(3,8),(4,9),(7,10)] => 1
[(1,4),(2,6),(3,8),(5,9),(7,10)] => 1
[(1,3),(2,6),(4,8),(5,9),(7,10)] => 1
[(1,2),(3,6),(4,8),(5,9),(7,10)] => 1
[(1,2),(3,5),(4,8),(6,9),(7,10)] => 1
[(1,3),(2,5),(4,8),(6,9),(7,10)] => 1
[(1,4),(2,5),(3,8),(6,9),(7,10)] => 1
[(1,5),(2,4),(3,8),(6,9),(7,10)] => 2
[(1,6),(2,4),(3,8),(5,9),(7,10)] => 2
[(1,7),(2,4),(3,8),(5,9),(6,10)] => 2
[(1,8),(2,4),(3,7),(5,9),(6,10)] => 2
[(1,9),(2,4),(3,7),(5,8),(6,10)] => 2
[(1,10),(2,4),(3,7),(5,8),(6,9)] => 2
[(1,10),(2,3),(4,7),(5,8),(6,9)] => 2
[(1,9),(2,3),(4,7),(5,8),(6,10)] => 2
[(1,8),(2,3),(4,7),(5,9),(6,10)] => 2
[(1,7),(2,3),(4,8),(5,9),(6,10)] => 2
[(1,6),(2,3),(4,8),(5,9),(7,10)] => 2
[(1,5),(2,3),(4,8),(6,9),(7,10)] => 2
[(1,4),(2,3),(5,8),(6,9),(7,10)] => 2
[(1,3),(2,4),(5,8),(6,9),(7,10)] => 1
[(1,2),(3,4),(5,8),(6,9),(7,10)] => 1
[(1,2),(3,4),(5,7),(6,9),(8,10)] => 1
[(1,3),(2,4),(5,7),(6,9),(8,10)] => 1
[(1,4),(2,3),(5,7),(6,9),(8,10)] => 2
[(1,5),(2,3),(4,7),(6,9),(8,10)] => 2
[(1,6),(2,3),(4,7),(5,9),(8,10)] => 2
[(1,7),(2,3),(4,6),(5,9),(8,10)] => 2
[(1,8),(2,3),(4,6),(5,9),(7,10)] => 2
[(1,9),(2,3),(4,6),(5,8),(7,10)] => 2
[(1,10),(2,3),(4,6),(5,8),(7,9)] => 2
[(1,10),(2,4),(3,6),(5,8),(7,9)] => 2
[(1,9),(2,4),(3,6),(5,8),(7,10)] => 2
[(1,8),(2,4),(3,6),(5,9),(7,10)] => 2
[(1,7),(2,4),(3,6),(5,9),(8,10)] => 2
[(1,6),(2,4),(3,7),(5,9),(8,10)] => 2
[(1,5),(2,4),(3,7),(6,9),(8,10)] => 2
[(1,4),(2,5),(3,7),(6,9),(8,10)] => 1
[(1,3),(2,5),(4,7),(6,9),(8,10)] => 1
[(1,2),(3,5),(4,7),(6,9),(8,10)] => 1
[(1,2),(3,6),(4,7),(5,9),(8,10)] => 1
[(1,3),(2,6),(4,7),(5,9),(8,10)] => 1
[(1,4),(2,6),(3,7),(5,9),(8,10)] => 1
[(1,5),(2,6),(3,7),(4,9),(8,10)] => 1
[(1,6),(2,5),(3,7),(4,9),(8,10)] => 2
[(1,7),(2,5),(3,6),(4,9),(8,10)] => 2
[(1,8),(2,5),(3,6),(4,9),(7,10)] => 2
[(1,9),(2,5),(3,6),(4,8),(7,10)] => 2
[(1,10),(2,5),(3,6),(4,8),(7,9)] => 2
[(1,10),(2,6),(3,5),(4,8),(7,9)] => 3
[(1,9),(2,6),(3,5),(4,8),(7,10)] => 3
[(1,8),(2,6),(3,5),(4,9),(7,10)] => 3
[(1,7),(2,6),(3,5),(4,9),(8,10)] => 3
[(1,6),(2,7),(3,5),(4,9),(8,10)] => 2
[(1,5),(2,7),(3,6),(4,9),(8,10)] => 2
[(1,4),(2,7),(3,6),(5,9),(8,10)] => 2
[(1,3),(2,7),(4,6),(5,9),(8,10)] => 2
[(1,2),(3,7),(4,6),(5,9),(8,10)] => 2
[(1,2),(3,8),(4,6),(5,9),(7,10)] => 2
[(1,3),(2,8),(4,6),(5,9),(7,10)] => 2
[(1,4),(2,8),(3,6),(5,9),(7,10)] => 2
[(1,5),(2,8),(3,6),(4,9),(7,10)] => 2
[(1,6),(2,8),(3,5),(4,9),(7,10)] => 2
[(1,7),(2,8),(3,5),(4,9),(6,10)] => 2
[(1,8),(2,7),(3,5),(4,9),(6,10)] => 3
[(1,9),(2,7),(3,5),(4,8),(6,10)] => 3
[(1,10),(2,7),(3,5),(4,8),(6,9)] => 3
[(1,10),(2,8),(3,5),(4,7),(6,9)] => 3
[(1,9),(2,8),(3,5),(4,7),(6,10)] => 3
[(1,8),(2,9),(3,5),(4,7),(6,10)] => 2
[(1,7),(2,9),(3,5),(4,8),(6,10)] => 2
[(1,6),(2,9),(3,5),(4,8),(7,10)] => 2
[(1,5),(2,9),(3,6),(4,8),(7,10)] => 2
[(1,4),(2,9),(3,6),(5,8),(7,10)] => 2
[(1,3),(2,9),(4,6),(5,8),(7,10)] => 2
[(1,2),(3,9),(4,6),(5,8),(7,10)] => 2
[(1,2),(3,10),(4,6),(5,8),(7,9)] => 2
[(1,3),(2,10),(4,6),(5,8),(7,9)] => 2
[(1,4),(2,10),(3,6),(5,8),(7,9)] => 2
[(1,5),(2,10),(3,6),(4,8),(7,9)] => 2
[(1,6),(2,10),(3,5),(4,8),(7,9)] => 2
[(1,7),(2,10),(3,5),(4,8),(6,9)] => 2
[(1,8),(2,10),(3,5),(4,7),(6,9)] => 2
[(1,9),(2,10),(3,5),(4,7),(6,8)] => 2
[(1,10),(2,9),(3,5),(4,7),(6,8)] => 3
[(1,10),(2,9),(3,4),(5,7),(6,8)] => 3
[(1,9),(2,10),(3,4),(5,7),(6,8)] => 2
[(1,8),(2,10),(3,4),(5,7),(6,9)] => 2
[(1,7),(2,10),(3,4),(5,8),(6,9)] => 2
[(1,6),(2,10),(3,4),(5,8),(7,9)] => 2
[(1,5),(2,10),(3,4),(6,8),(7,9)] => 2
[(1,4),(2,10),(3,5),(6,8),(7,9)] => 2
[(1,3),(2,10),(4,5),(6,8),(7,9)] => 2
[(1,2),(3,10),(4,5),(6,8),(7,9)] => 2
[(1,2),(3,9),(4,5),(6,8),(7,10)] => 2
[(1,3),(2,9),(4,5),(6,8),(7,10)] => 2
[(1,4),(2,9),(3,5),(6,8),(7,10)] => 2
[(1,5),(2,9),(3,4),(6,8),(7,10)] => 2
[(1,6),(2,9),(3,4),(5,8),(7,10)] => 2
[(1,7),(2,9),(3,4),(5,8),(6,10)] => 2
[(1,8),(2,9),(3,4),(5,7),(6,10)] => 2
[(1,9),(2,8),(3,4),(5,7),(6,10)] => 3
[(1,10),(2,8),(3,4),(5,7),(6,9)] => 3
[(1,10),(2,7),(3,4),(5,8),(6,9)] => 3
[(1,9),(2,7),(3,4),(5,8),(6,10)] => 3
[(1,8),(2,7),(3,4),(5,9),(6,10)] => 3
[(1,7),(2,8),(3,4),(5,9),(6,10)] => 2
[(1,6),(2,8),(3,4),(5,9),(7,10)] => 2
[(1,5),(2,8),(3,4),(6,9),(7,10)] => 2
[(1,4),(2,8),(3,5),(6,9),(7,10)] => 2
[(1,3),(2,8),(4,5),(6,9),(7,10)] => 2
[(1,2),(3,8),(4,5),(6,9),(7,10)] => 2
[(1,2),(3,7),(4,5),(6,9),(8,10)] => 2
[(1,3),(2,7),(4,5),(6,9),(8,10)] => 2
[(1,4),(2,7),(3,5),(6,9),(8,10)] => 2
[(1,5),(2,7),(3,4),(6,9),(8,10)] => 2
[(1,6),(2,7),(3,4),(5,9),(8,10)] => 2
[(1,7),(2,6),(3,4),(5,9),(8,10)] => 3
[(1,8),(2,6),(3,4),(5,9),(7,10)] => 3
[(1,9),(2,6),(3,4),(5,8),(7,10)] => 3
[(1,10),(2,6),(3,4),(5,8),(7,9)] => 3
[(1,10),(2,5),(3,4),(6,8),(7,9)] => 3
[(1,9),(2,5),(3,4),(6,8),(7,10)] => 3
[(1,8),(2,5),(3,4),(6,9),(7,10)] => 3
[(1,7),(2,5),(3,4),(6,9),(8,10)] => 3
[(1,6),(2,5),(3,4),(7,9),(8,10)] => 3
[(1,5),(2,6),(3,4),(7,9),(8,10)] => 2
[(1,4),(2,6),(3,5),(7,9),(8,10)] => 2
[(1,3),(2,6),(4,5),(7,9),(8,10)] => 2
[(1,2),(3,6),(4,5),(7,9),(8,10)] => 2
[(1,2),(3,5),(4,6),(7,9),(8,10)] => 1
[(1,3),(2,5),(4,6),(7,9),(8,10)] => 1
[(1,4),(2,5),(3,6),(7,9),(8,10)] => 1
[(1,5),(2,4),(3,6),(7,9),(8,10)] => 2
[(1,6),(2,4),(3,5),(7,9),(8,10)] => 2
[(1,7),(2,4),(3,5),(6,9),(8,10)] => 2
[(1,8),(2,4),(3,5),(6,9),(7,10)] => 2
[(1,9),(2,4),(3,5),(6,8),(7,10)] => 2
[(1,10),(2,4),(3,5),(6,8),(7,9)] => 2
[(1,10),(2,3),(4,5),(6,8),(7,9)] => 2
[(1,9),(2,3),(4,5),(6,8),(7,10)] => 2
[(1,8),(2,3),(4,5),(6,9),(7,10)] => 2
[(1,7),(2,3),(4,5),(6,9),(8,10)] => 2
[(1,6),(2,3),(4,5),(7,9),(8,10)] => 2
[(1,5),(2,3),(4,6),(7,9),(8,10)] => 2
[(1,4),(2,3),(5,6),(7,9),(8,10)] => 2
[(1,3),(2,4),(5,6),(7,9),(8,10)] => 1
[(1,2),(3,4),(5,6),(7,9),(8,10)] => 1
[(1,2),(3,4),(5,6),(7,10),(8,9)] => 2
[(1,3),(2,4),(5,6),(7,10),(8,9)] => 2
[(1,4),(2,3),(5,6),(7,10),(8,9)] => 2
[(1,5),(2,3),(4,6),(7,10),(8,9)] => 2
[(1,6),(2,3),(4,5),(7,10),(8,9)] => 2
[(1,7),(2,3),(4,5),(6,10),(8,9)] => 2
[(1,8),(2,3),(4,5),(6,10),(7,9)] => 2
[(1,9),(2,3),(4,5),(6,10),(7,8)] => 2
[(1,10),(2,3),(4,5),(6,9),(7,8)] => 3
[(1,10),(2,4),(3,5),(6,9),(7,8)] => 3
[(1,9),(2,4),(3,5),(6,10),(7,8)] => 2
[(1,8),(2,4),(3,5),(6,10),(7,9)] => 2
[(1,7),(2,4),(3,5),(6,10),(8,9)] => 2
[(1,6),(2,4),(3,5),(7,10),(8,9)] => 2
[(1,5),(2,4),(3,6),(7,10),(8,9)] => 2
[(1,4),(2,5),(3,6),(7,10),(8,9)] => 2
[(1,3),(2,5),(4,6),(7,10),(8,9)] => 2
[(1,2),(3,5),(4,6),(7,10),(8,9)] => 2
[(1,2),(3,6),(4,5),(7,10),(8,9)] => 2
[(1,3),(2,6),(4,5),(7,10),(8,9)] => 2
[(1,4),(2,6),(3,5),(7,10),(8,9)] => 2
[(1,5),(2,6),(3,4),(7,10),(8,9)] => 2
[(1,6),(2,5),(3,4),(7,10),(8,9)] => 3
[(1,7),(2,5),(3,4),(6,10),(8,9)] => 3
[(1,8),(2,5),(3,4),(6,10),(7,9)] => 3
[(1,9),(2,5),(3,4),(6,10),(7,8)] => 3
[(1,10),(2,5),(3,4),(6,9),(7,8)] => 3
[(1,10),(2,6),(3,4),(5,9),(7,8)] => 3
[(1,9),(2,6),(3,4),(5,10),(7,8)] => 3
[(1,8),(2,6),(3,4),(5,10),(7,9)] => 3
[(1,7),(2,6),(3,4),(5,10),(8,9)] => 3
[(1,6),(2,7),(3,4),(5,10),(8,9)] => 2
[(1,5),(2,7),(3,4),(6,10),(8,9)] => 2
[(1,4),(2,7),(3,5),(6,10),(8,9)] => 2
[(1,3),(2,7),(4,5),(6,10),(8,9)] => 2
[(1,2),(3,7),(4,5),(6,10),(8,9)] => 2
[(1,2),(3,8),(4,5),(6,10),(7,9)] => 2
[(1,3),(2,8),(4,5),(6,10),(7,9)] => 2
[(1,4),(2,8),(3,5),(6,10),(7,9)] => 2
[(1,5),(2,8),(3,4),(6,10),(7,9)] => 2
[(1,6),(2,8),(3,4),(5,10),(7,9)] => 2
[(1,7),(2,8),(3,4),(5,10),(6,9)] => 2
[(1,8),(2,7),(3,4),(5,10),(6,9)] => 3
[(1,9),(2,7),(3,4),(5,10),(6,8)] => 3
[(1,10),(2,7),(3,4),(5,9),(6,8)] => 3
[(1,10),(2,8),(3,4),(5,9),(6,7)] => 3
[(1,9),(2,8),(3,4),(5,10),(6,7)] => 3
[(1,8),(2,9),(3,4),(5,10),(6,7)] => 2
[(1,7),(2,9),(3,4),(5,10),(6,8)] => 2
[(1,6),(2,9),(3,4),(5,10),(7,8)] => 2
[(1,5),(2,9),(3,4),(6,10),(7,8)] => 2
[(1,4),(2,9),(3,5),(6,10),(7,8)] => 2
[(1,3),(2,9),(4,5),(6,10),(7,8)] => 2
[(1,2),(3,9),(4,5),(6,10),(7,8)] => 2
[(1,2),(3,10),(4,5),(6,9),(7,8)] => 3
[(1,3),(2,10),(4,5),(6,9),(7,8)] => 3
[(1,4),(2,10),(3,5),(6,9),(7,8)] => 3
[(1,5),(2,10),(3,4),(6,9),(7,8)] => 3
[(1,6),(2,10),(3,4),(5,9),(7,8)] => 3
[(1,7),(2,10),(3,4),(5,9),(6,8)] => 3
[(1,8),(2,10),(3,4),(5,9),(6,7)] => 3
[(1,9),(2,10),(3,4),(5,8),(6,7)] => 3
[(1,10),(2,9),(3,4),(5,8),(6,7)] => 4
[(1,10),(2,9),(3,5),(4,8),(6,7)] => 4
[(1,9),(2,10),(3,5),(4,8),(6,7)] => 3
[(1,8),(2,10),(3,5),(4,9),(6,7)] => 3
[(1,7),(2,10),(3,5),(4,9),(6,8)] => 3
[(1,6),(2,10),(3,5),(4,9),(7,8)] => 3
[(1,5),(2,10),(3,6),(4,9),(7,8)] => 3
[(1,4),(2,10),(3,6),(5,9),(7,8)] => 3
[(1,3),(2,10),(4,6),(5,9),(7,8)] => 3
[(1,2),(3,10),(4,6),(5,9),(7,8)] => 3
[(1,2),(3,9),(4,6),(5,10),(7,8)] => 2
[(1,3),(2,9),(4,6),(5,10),(7,8)] => 2
[(1,4),(2,9),(3,6),(5,10),(7,8)] => 2
[(1,5),(2,9),(3,6),(4,10),(7,8)] => 2
[(1,6),(2,9),(3,5),(4,10),(7,8)] => 2
[(1,7),(2,9),(3,5),(4,10),(6,8)] => 2
[(1,8),(2,9),(3,5),(4,10),(6,7)] => 2
[(1,9),(2,8),(3,5),(4,10),(6,7)] => 3
[(1,10),(2,8),(3,5),(4,9),(6,7)] => 3
[(1,10),(2,7),(3,5),(4,9),(6,8)] => 3
[(1,9),(2,7),(3,5),(4,10),(6,8)] => 3
[(1,8),(2,7),(3,5),(4,10),(6,9)] => 3
[(1,7),(2,8),(3,5),(4,10),(6,9)] => 2
[(1,6),(2,8),(3,5),(4,10),(7,9)] => 2
[(1,5),(2,8),(3,6),(4,10),(7,9)] => 2
[(1,4),(2,8),(3,6),(5,10),(7,9)] => 2
[(1,3),(2,8),(4,6),(5,10),(7,9)] => 2
[(1,2),(3,8),(4,6),(5,10),(7,9)] => 2
[(1,2),(3,7),(4,6),(5,10),(8,9)] => 2
[(1,3),(2,7),(4,6),(5,10),(8,9)] => 2
[(1,4),(2,7),(3,6),(5,10),(8,9)] => 2
[(1,5),(2,7),(3,6),(4,10),(8,9)] => 2
[(1,6),(2,7),(3,5),(4,10),(8,9)] => 2
[(1,7),(2,6),(3,5),(4,10),(8,9)] => 3
[(1,8),(2,6),(3,5),(4,10),(7,9)] => 3
[(1,9),(2,6),(3,5),(4,10),(7,8)] => 3
[(1,10),(2,6),(3,5),(4,9),(7,8)] => 3
[(1,10),(2,5),(3,6),(4,9),(7,8)] => 3
[(1,9),(2,5),(3,6),(4,10),(7,8)] => 2
[(1,8),(2,5),(3,6),(4,10),(7,9)] => 2
[(1,7),(2,5),(3,6),(4,10),(8,9)] => 2
[(1,6),(2,5),(3,7),(4,10),(8,9)] => 2
[(1,5),(2,6),(3,7),(4,10),(8,9)] => 2
[(1,4),(2,6),(3,7),(5,10),(8,9)] => 2
[(1,3),(2,6),(4,7),(5,10),(8,9)] => 2
[(1,2),(3,6),(4,7),(5,10),(8,9)] => 2
[(1,2),(3,5),(4,7),(6,10),(8,9)] => 2
[(1,3),(2,5),(4,7),(6,10),(8,9)] => 2
[(1,4),(2,5),(3,7),(6,10),(8,9)] => 2
[(1,5),(2,4),(3,7),(6,10),(8,9)] => 2
[(1,6),(2,4),(3,7),(5,10),(8,9)] => 2
[(1,7),(2,4),(3,6),(5,10),(8,9)] => 2
[(1,8),(2,4),(3,6),(5,10),(7,9)] => 2
[(1,9),(2,4),(3,6),(5,10),(7,8)] => 2
[(1,10),(2,4),(3,6),(5,9),(7,8)] => 3
[(1,10),(2,3),(4,6),(5,9),(7,8)] => 3
[(1,9),(2,3),(4,6),(5,10),(7,8)] => 2
[(1,8),(2,3),(4,6),(5,10),(7,9)] => 2
[(1,7),(2,3),(4,6),(5,10),(8,9)] => 2
[(1,6),(2,3),(4,7),(5,10),(8,9)] => 2
[(1,5),(2,3),(4,7),(6,10),(8,9)] => 2
[(1,4),(2,3),(5,7),(6,10),(8,9)] => 2
[(1,3),(2,4),(5,7),(6,10),(8,9)] => 2
[(1,2),(3,4),(5,7),(6,10),(8,9)] => 2
[(1,2),(3,4),(5,8),(6,10),(7,9)] => 2
[(1,3),(2,4),(5,8),(6,10),(7,9)] => 2
[(1,4),(2,3),(5,8),(6,10),(7,9)] => 2
[(1,5),(2,3),(4,8),(6,10),(7,9)] => 2
[(1,6),(2,3),(4,8),(5,10),(7,9)] => 2
[(1,7),(2,3),(4,8),(5,10),(6,9)] => 2
[(1,8),(2,3),(4,7),(5,10),(6,9)] => 2
[(1,9),(2,3),(4,7),(5,10),(6,8)] => 2
[(1,10),(2,3),(4,7),(5,9),(6,8)] => 3
[(1,10),(2,4),(3,7),(5,9),(6,8)] => 3
[(1,9),(2,4),(3,7),(5,10),(6,8)] => 2
[(1,8),(2,4),(3,7),(5,10),(6,9)] => 2
[(1,7),(2,4),(3,8),(5,10),(6,9)] => 2
[(1,6),(2,4),(3,8),(5,10),(7,9)] => 2
[(1,5),(2,4),(3,8),(6,10),(7,9)] => 2
[(1,4),(2,5),(3,8),(6,10),(7,9)] => 2
[(1,3),(2,5),(4,8),(6,10),(7,9)] => 2
[(1,2),(3,5),(4,8),(6,10),(7,9)] => 2
[(1,2),(3,6),(4,8),(5,10),(7,9)] => 2
[(1,3),(2,6),(4,8),(5,10),(7,9)] => 2
[(1,4),(2,6),(3,8),(5,10),(7,9)] => 2
[(1,5),(2,6),(3,8),(4,10),(7,9)] => 2
[(1,6),(2,5),(3,8),(4,10),(7,9)] => 2
[(1,7),(2,5),(3,8),(4,10),(6,9)] => 2
[(1,8),(2,5),(3,7),(4,10),(6,9)] => 2
[(1,9),(2,5),(3,7),(4,10),(6,8)] => 2
[(1,10),(2,5),(3,7),(4,9),(6,8)] => 3
[(1,10),(2,6),(3,7),(4,9),(5,8)] => 3
[(1,9),(2,6),(3,7),(4,10),(5,8)] => 2
[(1,8),(2,6),(3,7),(4,10),(5,9)] => 2
[(1,7),(2,6),(3,8),(4,10),(5,9)] => 2
[(1,6),(2,7),(3,8),(4,10),(5,9)] => 2
[(1,5),(2,7),(3,8),(4,10),(6,9)] => 2
[(1,4),(2,7),(3,8),(5,10),(6,9)] => 2
[(1,3),(2,7),(4,8),(5,10),(6,9)] => 2
[(1,2),(3,7),(4,8),(5,10),(6,9)] => 2
[(1,2),(3,8),(4,7),(5,10),(6,9)] => 2
[(1,3),(2,8),(4,7),(5,10),(6,9)] => 2
[(1,4),(2,8),(3,7),(5,10),(6,9)] => 2
[(1,5),(2,8),(3,7),(4,10),(6,9)] => 2
[(1,6),(2,8),(3,7),(4,10),(5,9)] => 2
[(1,7),(2,8),(3,6),(4,10),(5,9)] => 2
[(1,8),(2,7),(3,6),(4,10),(5,9)] => 3
[(1,9),(2,7),(3,6),(4,10),(5,8)] => 3
[(1,10),(2,7),(3,6),(4,9),(5,8)] => 3
[(1,10),(2,8),(3,6),(4,9),(5,7)] => 3
[(1,9),(2,8),(3,6),(4,10),(5,7)] => 3
[(1,8),(2,9),(3,6),(4,10),(5,7)] => 2
[(1,7),(2,9),(3,6),(4,10),(5,8)] => 2
[(1,6),(2,9),(3,7),(4,10),(5,8)] => 2
[(1,5),(2,9),(3,7),(4,10),(6,8)] => 2
[(1,4),(2,9),(3,7),(5,10),(6,8)] => 2
[(1,3),(2,9),(4,7),(5,10),(6,8)] => 2
[(1,2),(3,9),(4,7),(5,10),(6,8)] => 2
[(1,2),(3,10),(4,7),(5,9),(6,8)] => 3
[(1,3),(2,10),(4,7),(5,9),(6,8)] => 3
[(1,4),(2,10),(3,7),(5,9),(6,8)] => 3
[(1,5),(2,10),(3,7),(4,9),(6,8)] => 3
[(1,6),(2,10),(3,7),(4,9),(5,8)] => 3
[(1,7),(2,10),(3,6),(4,9),(5,8)] => 3
[(1,8),(2,10),(3,6),(4,9),(5,7)] => 3
[(1,9),(2,10),(3,6),(4,8),(5,7)] => 3
[(1,10),(2,9),(3,6),(4,8),(5,7)] => 4
[(1,10),(2,9),(3,7),(4,8),(5,6)] => 4
[(1,9),(2,10),(3,7),(4,8),(5,6)] => 3
[(1,8),(2,10),(3,7),(4,9),(5,6)] => 3
[(1,7),(2,10),(3,8),(4,9),(5,6)] => 3
[(1,6),(2,10),(3,8),(4,9),(5,7)] => 3
[(1,5),(2,10),(3,8),(4,9),(6,7)] => 3
[(1,4),(2,10),(3,8),(5,9),(6,7)] => 3
[(1,3),(2,10),(4,8),(5,9),(6,7)] => 3
[(1,2),(3,10),(4,8),(5,9),(6,7)] => 3
[(1,2),(3,9),(4,8),(5,10),(6,7)] => 3
[(1,3),(2,9),(4,8),(5,10),(6,7)] => 3
[(1,4),(2,9),(3,8),(5,10),(6,7)] => 3
[(1,5),(2,9),(3,8),(4,10),(6,7)] => 3
[(1,6),(2,9),(3,8),(4,10),(5,7)] => 3
[(1,7),(2,9),(3,8),(4,10),(5,6)] => 3
[(1,8),(2,9),(3,7),(4,10),(5,6)] => 3
[(1,9),(2,8),(3,7),(4,10),(5,6)] => 4
[(1,10),(2,8),(3,7),(4,9),(5,6)] => 4
[(1,10),(2,7),(3,8),(4,9),(5,6)] => 3
[(1,9),(2,7),(3,8),(4,10),(5,6)] => 3
[(1,8),(2,7),(3,9),(4,10),(5,6)] => 3
[(1,7),(2,8),(3,9),(4,10),(5,6)] => 2
[(1,6),(2,8),(3,9),(4,10),(5,7)] => 2
[(1,5),(2,8),(3,9),(4,10),(6,7)] => 2
[(1,4),(2,8),(3,9),(5,10),(6,7)] => 2
[(1,3),(2,8),(4,9),(5,10),(6,7)] => 2
[(1,2),(3,8),(4,9),(5,10),(6,7)] => 2
[(1,2),(3,7),(4,9),(5,10),(6,8)] => 2
[(1,3),(2,7),(4,9),(5,10),(6,8)] => 2
[(1,4),(2,7),(3,9),(5,10),(6,8)] => 2
[(1,5),(2,7),(3,9),(4,10),(6,8)] => 2
[(1,6),(2,7),(3,9),(4,10),(5,8)] => 2
[(1,7),(2,6),(3,9),(4,10),(5,8)] => 2
[(1,8),(2,6),(3,9),(4,10),(5,7)] => 2
[(1,9),(2,6),(3,8),(4,10),(5,7)] => 3
[(1,10),(2,6),(3,8),(4,9),(5,7)] => 3
[(1,10),(2,5),(3,8),(4,9),(6,7)] => 3
[(1,9),(2,5),(3,8),(4,10),(6,7)] => 3
[(1,8),(2,5),(3,9),(4,10),(6,7)] => 2
[(1,7),(2,5),(3,9),(4,10),(6,8)] => 2
[(1,6),(2,5),(3,9),(4,10),(7,8)] => 2
[(1,5),(2,6),(3,9),(4,10),(7,8)] => 2
[(1,4),(2,6),(3,9),(5,10),(7,8)] => 2
[(1,3),(2,6),(4,9),(5,10),(7,8)] => 2
[(1,2),(3,6),(4,9),(5,10),(7,8)] => 2
[(1,2),(3,5),(4,9),(6,10),(7,8)] => 2
[(1,3),(2,5),(4,9),(6,10),(7,8)] => 2
[(1,4),(2,5),(3,9),(6,10),(7,8)] => 2
[(1,5),(2,4),(3,9),(6,10),(7,8)] => 2
[(1,6),(2,4),(3,9),(5,10),(7,8)] => 2
[(1,7),(2,4),(3,9),(5,10),(6,8)] => 2
[(1,8),(2,4),(3,9),(5,10),(6,7)] => 2
[(1,9),(2,4),(3,8),(5,10),(6,7)] => 3
[(1,10),(2,4),(3,8),(5,9),(6,7)] => 3
[(1,10),(2,3),(4,8),(5,9),(6,7)] => 3
[(1,9),(2,3),(4,8),(5,10),(6,7)] => 3
[(1,8),(2,3),(4,9),(5,10),(6,7)] => 2
[(1,7),(2,3),(4,9),(5,10),(6,8)] => 2
[(1,6),(2,3),(4,9),(5,10),(7,8)] => 2
[(1,5),(2,3),(4,9),(6,10),(7,8)] => 2
[(1,4),(2,3),(5,9),(6,10),(7,8)] => 2
[(1,3),(2,4),(5,9),(6,10),(7,8)] => 2
[(1,2),(3,4),(5,9),(6,10),(7,8)] => 2
[(1,2),(3,4),(5,10),(6,9),(7,8)] => 3
[(1,3),(2,4),(5,10),(6,9),(7,8)] => 3
[(1,4),(2,3),(5,10),(6,9),(7,8)] => 3
[(1,5),(2,3),(4,10),(6,9),(7,8)] => 3
[(1,6),(2,3),(4,10),(5,9),(7,8)] => 3
[(1,7),(2,3),(4,10),(5,9),(6,8)] => 3
[(1,8),(2,3),(4,10),(5,9),(6,7)] => 3
[(1,9),(2,3),(4,10),(5,8),(6,7)] => 3
[(1,10),(2,3),(4,9),(5,8),(6,7)] => 4
[(1,10),(2,4),(3,9),(5,8),(6,7)] => 4
[(1,9),(2,4),(3,10),(5,8),(6,7)] => 3
[(1,8),(2,4),(3,10),(5,9),(6,7)] => 3
[(1,7),(2,4),(3,10),(5,9),(6,8)] => 3
[(1,6),(2,4),(3,10),(5,9),(7,8)] => 3
[(1,5),(2,4),(3,10),(6,9),(7,8)] => 3
[(1,4),(2,5),(3,10),(6,9),(7,8)] => 3
[(1,3),(2,5),(4,10),(6,9),(7,8)] => 3
[(1,2),(3,5),(4,10),(6,9),(7,8)] => 3
[(1,2),(3,6),(4,10),(5,9),(7,8)] => 3
[(1,3),(2,6),(4,10),(5,9),(7,8)] => 3
[(1,4),(2,6),(3,10),(5,9),(7,8)] => 3
[(1,5),(2,6),(3,10),(4,9),(7,8)] => 3
[(1,6),(2,5),(3,10),(4,9),(7,8)] => 3
[(1,7),(2,5),(3,10),(4,9),(6,8)] => 3
[(1,8),(2,5),(3,10),(4,9),(6,7)] => 3
[(1,9),(2,5),(3,10),(4,8),(6,7)] => 3
[(1,10),(2,5),(3,9),(4,8),(6,7)] => 4
[(1,10),(2,6),(3,9),(4,8),(5,7)] => 4
[(1,9),(2,6),(3,10),(4,8),(5,7)] => 3
[(1,8),(2,6),(3,10),(4,9),(5,7)] => 3
[(1,7),(2,6),(3,10),(4,9),(5,8)] => 3
[(1,6),(2,7),(3,10),(4,9),(5,8)] => 3
[(1,5),(2,7),(3,10),(4,9),(6,8)] => 3
[(1,4),(2,7),(3,10),(5,9),(6,8)] => 3
[(1,3),(2,7),(4,10),(5,9),(6,8)] => 3
[(1,2),(3,7),(4,10),(5,9),(6,8)] => 3
[(1,2),(3,8),(4,10),(5,9),(6,7)] => 3
[(1,3),(2,8),(4,10),(5,9),(6,7)] => 3
[(1,4),(2,8),(3,10),(5,9),(6,7)] => 3
[(1,5),(2,8),(3,10),(4,9),(6,7)] => 3
[(1,6),(2,8),(3,10),(4,9),(5,7)] => 3
[(1,7),(2,8),(3,10),(4,9),(5,6)] => 3
[(1,8),(2,7),(3,10),(4,9),(5,6)] => 3
[(1,9),(2,7),(3,10),(4,8),(5,6)] => 3
[(1,10),(2,7),(3,9),(4,8),(5,6)] => 4
[(1,10),(2,8),(3,9),(4,7),(5,6)] => 4
[(1,9),(2,8),(3,10),(4,7),(5,6)] => 4
[(1,8),(2,9),(3,10),(4,7),(5,6)] => 3
[(1,7),(2,9),(3,10),(4,8),(5,6)] => 3
[(1,6),(2,9),(3,10),(4,8),(5,7)] => 3
[(1,5),(2,9),(3,10),(4,8),(6,7)] => 3
[(1,4),(2,9),(3,10),(5,8),(6,7)] => 3
[(1,3),(2,9),(4,10),(5,8),(6,7)] => 3
[(1,2),(3,9),(4,10),(5,8),(6,7)] => 3
[(1,2),(3,10),(4,9),(5,8),(6,7)] => 4
[(1,3),(2,10),(4,9),(5,8),(6,7)] => 4
[(1,4),(2,10),(3,9),(5,8),(6,7)] => 4
[(1,5),(2,10),(3,9),(4,8),(6,7)] => 4
[(1,6),(2,10),(3,9),(4,8),(5,7)] => 4
[(1,7),(2,10),(3,9),(4,8),(5,6)] => 4
[(1,8),(2,10),(3,9),(4,7),(5,6)] => 4
[(1,9),(2,10),(3,8),(4,7),(5,6)] => 4
[(1,10),(2,9),(3,8),(4,7),(5,6)] => 5
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
2,1 5,9,1 14,70,20,1 42,552,315,35,1
$F_{2} = q$
$F_{4} = 2\ q + q^{2}$
$F_{6} = 5\ q + 9\ q^{2} + q^{3}$
$F_{8} = 14\ q + 70\ q^{2} + 20\ q^{3} + q^{4}$
$F_{10} = 42\ q + 552\ q^{2} + 315\ q^{3} + 35\ q^{4} + q^{5}$
Description
The nesting number of a perfect matching.
This is the maximal number of chords in the standard representation of a perfect matching that mutually nest.
This is the maximal number of chords in the standard representation of a perfect matching that mutually nest.
Code
def statistic(m):
if not m:
return 0
return max(la[0] for la in to_oscillating(m) if la)
def to_oscillating(m):
RuleRSK = GrowthDiagram.rules.RSK()
m = PerfectMatching(m)
n = m.size()
filling = {(i-1, n-j): 1 for i, j in m.arcs()}
shape = list(range(n-1,0,-1))
return RuleRSK(filling, shape=shape).out_labels()
Created
Sep 10, 2020 at 21:17 by Martin Rubey
Updated
Feb 03, 2023 at 13:18 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!