Identifier
- St001609: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[1]=>1
[2]=>1
[1,1]=>1
[3]=>1
[2,1]=>2
[1,1,1]=>3
[4]=>2
[3,1]=>4
[2,2]=>6
[2,1,1]=>9
[1,1,1,1]=>16
[5]=>3
[4,1]=>9
[3,2]=>15
[3,1,1]=>26
[2,2,1]=>37
[2,1,1,1]=>67
[1,1,1,1,1]=>125
[6]=>6
[5,1]=>20
[4,2]=>43
[4,1,1]=>75
[3,3]=>51
[3,2,1]=>134
[3,1,1,1]=>251
[2,2,2]=>195
[2,2,1,1]=>359
[2,1,1,1,1]=>680
[1,1,1,1,1,1]=>1296
[7]=>11
[6,1]=>48
[5,2]=>116
[5,1,1]=>214
[4,3]=>175
[4,2,1]=>469
[4,1,1,1]=>888
[3,3,1]=>596
[3,2,2]=>861
[3,2,1,1]=>1636
[3,1,1,1,1]=>3135
[2,2,2,1]=>2365
[2,2,1,1,1]=>4530
[2,1,1,1,1,1]=>8716
[1,1,1,1,1,1,1]=>16807
[8]=>23
[7,1]=>115
[6,2]=>329
[6,1,1]=>612
[5,3]=>573
[5,2,1]=>1577
[5,1,1,1]=>3023
[4,4]=>698
[4,3,1]=>2445
[4,2,2]=>3559
[4,2,1,1]=>6817
[4,1,1,1,1]=>13155
[3,3,2]=>4562
[3,3,1,1]=>8786
[3,2,2,1]=>12765
[3,2,1,1,1]=>24674
[3,1,1,1,1,1]=>47787
[2,2,2,2]=>18584
[2,2,2,1,1]=>35892
[2,2,1,1,1,1]=>69552
[2,1,1,1,1,1,1]=>134960
[1,1,1,1,1,1,1,1]=>262144
[9]=>47
[8,1]=>286
[7,2]=>918
[7,1,1]=>1747
[6,3]=>1866
[6,2,1]=>5204
[6,1,1,1]=>10038
[5,4]=>2626
[5,3,1]=>9480
[5,2,2]=>13820
[5,2,1,1]=>26736
[5,1,1,1,1]=>51873
[4,4,1]=>11513
[4,3,2]=>21715
[4,3,1,1]=>42080
[4,2,2,1]=>61417
[4,2,1,1,1]=>119325
[4,1,1,1,1,1]=>232154
[3,3,3]=>28110
[3,3,2,1]=>79629
[3,3,1,1,1]=>154833
[3,2,2,2]=>116314
[3,2,2,1,1]=>226225
[3,2,1,1,1,1]=>440542
[3,1,1,1,1,1,1]=>858578
[2,2,2,2,1]=>330685
[2,2,2,1,1,1]=>644190
[2,2,1,1,1,1,1]=>1255973
[2,1,1,1,1,1,1,1]=>2450309
[1,1,1,1,1,1,1,1,1]=>4782969
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of coloured trees such that the multiplicities of colours are given by a partition.
In particular, the value on the partition $(n)$ is the number of unlabelled trees on $n$ vertices, oeis:A000055, whereas the value on the partition $(1^n)$ is the number of labelled trees oeis:A000272.
In particular, the value on the partition $(n)$ is the number of unlabelled trees on $n$ vertices, oeis:A000055, whereas the value on the partition $(1^n)$ is the number of labelled trees oeis:A000272.
Code
def statistic(mu): h = SymmetricFunctions(QQ).h() A = CombinatorialSpecies() X = species.SingletonSpecies() E = species.SetSpecies() A.define(X*E(A)) V = (X + species.CharacteristicSpecies(2)).cycle_index_series() - (X^2).cycle_index_series() F = V(A.cycle_index_series()) return F.coefficient(mu.size()).scalar(h(mu))
Created
Sep 27, 2020 at 12:59 by Martin Rubey
Updated
Sep 27, 2020 at 12:59 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!