Identifier
-
Mp00018:
Binary trees
—left border symmetry⟶
Binary trees
Mp00013: Binary trees —to poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001613: Lattices ⟶ ℤ
Values
[.,.] => [.,.] => ([],1) => ([(0,1)],2) => 1
[.,[.,.]] => [.,[.,.]] => ([(0,1)],2) => ([(0,2),(2,1)],3) => 1
[[.,.],.] => [[.,.],.] => ([(0,1)],2) => ([(0,2),(2,1)],3) => 1
[.,[.,[.,.]]] => [.,[.,[.,.]]] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 1
[.,[[.,.],.]] => [.,[[.,.],.]] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 1
[[.,.],[.,.]] => [[.,[.,.]],.] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 1
[[.,[.,.]],.] => [[.,.],[.,.]] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[[[.,.],.],.] => [[[.,.],.],.] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 1
[.,[.,[.,[.,.]]]] => [.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[.,[.,[[.,.],.]]] => [.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[.,[[.,.],[.,.]]] => [.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[.,[[.,[.,.]],.]] => [.,[[.,.],[.,.]]] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[.,[[[.,.],.],.]] => [.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[[.,.],[.,[.,.]]] => [[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[[.,.],[[.,.],.]] => [[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[[.,[.,.]],[.,.]] => [[.,[.,.]],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 1
[[[.,.],.],[.,.]] => [[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[[.,[.,[.,.]]],.] => [[.,.],[.,[.,.]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 1
[[.,[[.,.],.]],.] => [[.,.],[[.,.],.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 1
[[[.,.],[.,.]],.] => [[[.,.],[.,.]],.] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[[[.,[.,.]],.],.] => [[[.,.],.],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 1
[[[[.,.],.],.],.] => [[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[.,[.,[.,[.,[.,.]]]]] => [.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[.,[.,[.,[[.,.],.]]]] => [.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[.,[.,[[.,.],[.,.]]]] => [.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[.,[.,[[.,[.,.]],.]]] => [.,[.,[[.,.],[.,.]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 1
[.,[.,[[[.,.],.],.]]] => [.,[.,[[[.,.],.],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[.,[[.,.],[.,[.,.]]]] => [.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[.,[[.,.],[[.,.],.]]] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[.,[[.,[.,.]],[.,.]]] => [.,[[.,[.,.]],[.,.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 1
[.,[[[.,.],.],[.,.]]] => [.,[[[.,[.,.]],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[.,[[.,[.,[.,.]]],.]] => [.,[[.,.],[.,[.,.]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 1
[.,[[.,[[.,.],.]],.]] => [.,[[.,.],[[.,.],.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 1
[.,[[[.,.],[.,.]],.]] => [.,[[[.,.],[.,.]],.]] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 1
[.,[[[.,[.,.]],.],.]] => [.,[[[.,.],.],[.,.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 1
[.,[[[[.,.],.],.],.]] => [.,[[[[.,.],.],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[.,.],[.,[.,[.,.]]]] => [[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[.,.],[.,[[.,.],.]]] => [[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[.,.],[[.,.],[.,.]]] => [[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[.,.],[[.,[.,.]],.]] => [[.,[[.,.],[.,.]]],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 1
[[.,.],[[[.,.],.],.]] => [[.,[[[.,.],.],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[.,[.,.]],[.,[.,.]]] => [[.,[.,[.,.]]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 1
[[.,[.,.]],[[.,.],.]] => [[.,[[.,.],.]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 1
[[[.,.],.],[.,[.,.]]] => [[[.,[.,[.,.]]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[[.,.],.],[[.,.],.]] => [[[.,[[.,.],.]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[[.,.],[.,.]],[.,.]] => [[[.,[.,.]],[.,.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 1
[[[.,[.,.]],.],[.,.]] => [[[.,[.,.]],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 1
[[[[.,.],.],.],[.,.]] => [[[[.,[.,.]],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[.,[.,[.,[.,.]]]],.] => [[.,.],[.,[.,[.,.]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 1
[[.,[.,[[.,.],.]]],.] => [[.,.],[.,[[.,.],.]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 1
[[.,[[.,.],[.,.]]],.] => [[.,.],[[.,[.,.]],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 1
[[.,[[[.,.],.],.]],.] => [[.,.],[[[.,.],.],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 1
[[[.,.],[.,[.,.]]],.] => [[[.,.],[.,[.,.]]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 1
[[[.,.],[[.,.],.]],.] => [[[.,.],[[.,.],.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 1
[[[[.,.],.],[.,.]],.] => [[[[.,.],[.,.]],.],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 1
[[[[.,.],[.,.]],.],.] => [[[[.,.],.],[.,.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 1
[[[[.,[.,.]],.],.],.] => [[[[.,.],.],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 1
[[[[[.,.],.],.],.],.] => [[[[[.,.],.],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[.,[.,[.,[.,[.,[.,.]]]]]] => [.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[.,[.,[.,[[.,.],.]]]]] => [.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[.,[.,[[.,.],[.,.]]]]] => [.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[.,[.,[[.,[.,.]],.]]]] => [.,[.,[.,[[.,.],[.,.]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8) => 1
[.,[.,[.,[[[.,.],.],.]]]] => [.,[.,[.,[[[.,.],.],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[.,[[.,.],[.,[.,.]]]]] => [.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[.,[[.,.],[[.,.],.]]]] => [.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[.,[[.,[.,.]],[.,.]]]] => [.,[.,[[.,[.,.]],[.,.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 1
[.,[.,[[[.,.],.],[.,.]]]] => [.,[.,[[[.,[.,.]],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[.,[[.,[.,[.,.]]],.]]] => [.,[.,[[.,.],[.,[.,.]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 1
[.,[.,[[.,[[.,.],.]],.]]] => [.,[.,[[.,.],[[.,.],.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 1
[.,[.,[[[.,.],[.,.]],.]]] => [.,[.,[[[.,.],[.,.]],.]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8) => 1
[.,[.,[[[.,[.,.]],.],.]]] => [.,[.,[[[.,.],.],[.,.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 1
[.,[.,[[[[.,.],.],.],.]]] => [.,[.,[[[[.,.],.],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[[.,.],[.,[.,[.,.]]]]] => [.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[[.,.],[.,[[.,.],.]]]] => [.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[[.,.],[[.,.],[.,.]]]] => [.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[[.,.],[[.,[.,.]],.]]] => [.,[[.,[[.,.],[.,.]]],.]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8) => 1
[.,[[.,.],[[[.,.],.],.]]] => [.,[[.,[[[.,.],.],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[[[.,.],.],[.,[.,.]]]] => [.,[[[.,[.,[.,.]]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[[[.,.],.],[[.,.],.]]] => [.,[[[.,[[.,.],.]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[[[.,.],[.,.]],[.,.]]] => [.,[[[.,[.,.]],[.,.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 1
[.,[[[[.,.],.],.],[.,.]]] => [.,[[[[.,[.,.]],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[.,[[[.,.],[.,[.,.]]],.]] => [.,[[[.,.],[.,[.,.]]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 1
[.,[[[.,.],[[.,.],.]],.]] => [.,[[[.,.],[[.,.],.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 1
[.,[[[[.,.],.],[.,.]],.]] => [.,[[[[.,.],[.,.]],.],.]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8) => 1
[.,[[[[.,.],[.,.]],.],.]] => [.,[[[[.,.],.],[.,.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 1
[.,[[[[[.,.],.],.],.],.]] => [.,[[[[[.,.],.],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[[.,.],[.,[.,[.,[.,.]]]]] => [[.,[.,[.,[.,[.,.]]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[[.,.],[.,[.,[[.,.],.]]]] => [[.,[.,[.,[[.,.],.]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[[.,.],[.,[[.,.],[.,.]]]] => [[.,[.,[[.,[.,.]],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[[.,.],[.,[[.,[.,.]],.]]] => [[.,[.,[[.,.],[.,.]]]],.] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8) => 1
[[.,.],[.,[[[.,.],.],.]]] => [[.,[.,[[[.,.],.],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[[.,.],[[.,.],[.,[.,.]]]] => [[.,[[.,[.,[.,.]]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[[.,.],[[.,.],[[.,.],.]]] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[[.,.],[[.,[.,.]],[.,.]]] => [[.,[[.,[.,.]],[.,.]]],.] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 1
[[.,.],[[[.,.],.],[.,.]]] => [[.,[[[.,[.,.]],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[[.,.],[[.,[.,[.,.]]],.]] => [[.,[[.,.],[.,[.,.]]]],.] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 1
[[.,.],[[.,[[.,.],.]],.]] => [[.,[[.,.],[[.,.],.]]],.] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 1
[[.,.],[[[.,.],[.,.]],.]] => [[.,[[[.,.],[.,.]],.]],.] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8) => 1
[[.,.],[[[.,[.,.]],.],.]] => [[.,[[[.,.],.],[.,.]]],.] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 1
[[.,.],[[[[.,.],.],.],.]] => [[.,[[[[.,.],.],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[[[.,.],.],[.,[.,[.,.]]]] => [[[.,[.,[.,[.,.]]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
>>> Load all 194 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The binary logarithm of the size of the center of a lattice.
An element of a lattice is central if it is neutral and has a complement. The subposet induced by central elements is a Boolean lattice.
An element of a lattice is central if it is neutral and has a complement. The subposet induced by central elements is a Boolean lattice.
Map
left border symmetry
Description
Return the tree where a symmetry has been applied recursively on all left borders. If a tree is made of three trees $T_1, T_2, T_3$ on its left border, it becomes $T_3, T_2, T_1$ where same symmetry has been applied to $T_1, T_2, T_3$.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal $\mathcal I$ in a poset $P$ is a downward closed set, i.e., $a \in \mathcal I$ and $b \leq a$ implies $b \in \mathcal I$. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
An order ideal $\mathcal I$ in a poset $P$ is a downward closed set, i.e., $a \in \mathcal I$ and $b \leq a$ implies $b \in \mathcal I$. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!