Identifier
Values
[1,0] => [2,1] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0] => [3,1,2] => [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 1
[1,1,0,0] => [2,3,1] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 1
[1,0,1,0,1,0] => [4,1,2,3] => [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => 1
[1,0,1,1,0,0] => [3,1,4,2] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[1,1,0,0,1,0] => [2,4,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => 1
[1,1,0,1,0,0] => [4,3,1,2] => [3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => 1
[1,1,1,0,0,0] => [2,3,4,1] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => 1
[1,0,1,1,0,1,0,0] => [5,1,4,2,3] => [4,1,5,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[1,1,0,1,0,0,1,0] => [5,3,1,2,4] => [3,5,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 1
[1,1,0,1,1,0,0,0] => [4,3,1,5,2] => [3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[1,1,1,0,0,1,0,0] => [2,5,4,1,3] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => 1
[1,0,1,1,0,1,0,0,1,0] => [6,1,4,2,3,5] => [4,1,6,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[1,0,1,1,0,1,1,0,0,0] => [5,1,4,2,6,3] => [4,1,6,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[1,0,1,1,1,0,0,1,0,0] => [3,1,6,5,2,4] => [5,1,3,6,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[1,1,0,1,1,0,0,0,1,0] => [4,3,1,6,2,5] => [3,6,2,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[1,1,0,1,1,0,0,1,0,0] => [6,3,1,5,2,4] => [3,5,2,6,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[1,1,0,1,1,0,1,0,0,0] => [6,4,1,5,2,3] => [4,6,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[1,1,1,0,0,1,0,0,1,0] => [2,6,4,1,3,5] => [4,2,6,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 1
[1,1,1,0,0,1,1,0,0,0] => [2,5,4,1,6,3] => [4,2,6,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[1,1,1,0,1,0,0,0,1,0] => [6,3,4,1,2,5] => [3,6,4,2,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,7),(6,7),(7,8)],9) => 1
[1,1,1,0,1,1,0,0,0,0] => [5,3,4,1,6,2] => [3,6,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(8,7)],9) => 1
[1,0,1,1,0,1,1,0,0,0,1,0] => [5,1,4,2,7,3,6] => [4,1,7,3,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,0,1,1,0,1,1,0,0,1,0,0] => [7,1,4,2,6,3,5] => [4,1,6,3,7,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,0,1,1,0,1,1,0,1,0,0,0] => [7,1,5,2,6,3,4] => [5,1,7,3,6,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,0,1,1,1,0,0,1,0,0,1,0] => [3,1,7,5,2,4,6] => [5,1,3,7,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,0,1,1,1,0,0,1,1,0,0,0] => [3,1,6,5,2,7,4] => [5,1,3,7,4,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,0,1,1,1,0,1,1,0,0,0,0] => [6,1,4,5,2,7,3] => [4,1,7,5,3,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,0,1,1,0,0,1,0,0,1,0] => [7,3,1,5,2,4,6] => [3,5,2,7,4,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,0,1,1,0,1,0,0,0,1,0] => [7,4,1,5,2,3,6] => [4,7,2,5,3,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,1,0,0,1,1,0,0,0,1,0] => [2,5,4,1,7,3,6] => [4,2,7,3,5,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,1,0,1,0,0,1,0,0,1,0] => [7,3,5,1,2,4,6] => [3,7,5,2,4,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,1,0,1,1,0,0,0,0,1,0] => [5,3,4,1,7,2,6] => [3,7,4,2,5,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[1,1,1,1,0,0,1,0,0,0,1,0] => [2,7,4,5,1,3,6] => [4,2,7,5,3,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9) => 1
[] => [1] => [1] => ([(0,1)],2) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The binary logarithm of the size of the center of a lattice.
An element of a lattice is central if it is neutral and has a complement. The subposet induced by central elements is a Boolean lattice.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.
Map
Corteel
Description
Corteel's map interchanging the number of crossings and the number of nestings of a permutation.
This involution creates a labelled bicoloured Motzkin path, using the Foata-Zeilberger map. In the corresponding bump diagram, each label records the number of arcs nesting the given arc. Then each label is replaced by its complement, and the inverse of the Foata-Zeilberger map is applied.