Identifier
Values
([],1) => ([],1) => 0
([],2) => ([],1) => 0
([(0,1)],2) => ([(0,1)],2) => 1
([],3) => ([],1) => 0
([(1,2)],3) => ([(0,1)],2) => 1
([(0,2),(1,2)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([],4) => ([],1) => 0
([(2,3)],4) => ([(0,1)],2) => 1
([(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(0,3),(1,2)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,3),(1,2),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([],5) => ([],1) => 0
([(3,4)],5) => ([(0,1)],2) => 1
([(2,4),(3,4)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(1,4),(2,3)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(1,4),(2,3),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(0,1),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([],6) => ([],1) => 0
([(4,5)],6) => ([(0,1)],2) => 1
([(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(2,5),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(1,2),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,4),(2,3)],6) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([],7) => ([],1) => 0
([(5,6)],7) => ([(0,1)],2) => 1
([(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(3,6),(4,5)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(3,6),(4,5),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(2,3),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 1
([(1,6),(2,5),(3,4)],7) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The binary logarithm of the size of the center of a lattice.
An element of a lattice is central if it is neutral and has a complement. The subposet induced by central elements is a Boolean lattice.
Map
connected vertex partitions
Description
Sends a graph to the lattice of its connected vertex partitions.
A connected vertex partition of a graph $G = (V,E)$ is a set partition of $V$ such that each part induced a connected subgraph of $G$. The connected vertex partitions of $G$ form a lattice under refinement. If $G = K_n$ is a complete graph, the resulting lattice is the lattice of set partitions on $n$ elements.
In the language of matroid theory, this map sends a graph to the lattice of flats of its graphic matroid. The resulting lattice is a geometric lattice, i.e. it is atomistic and semimodular.