Identifier
Values
([(0,1)],2) => ([(0,1)],2) => ([],1) => ([(0,1)],2) => 1
([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([(0,1)],2) => ([(0,2),(2,1)],3) => 2
([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([],3) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 3
([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 3
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([],3) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => ([(0,3),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9) => 4
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 4
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(1,2),(2,3)],4) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 4
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 4
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => ([(0,1),(0,2),(0,3)],4) => ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9) => 4
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,3),(1,2)],4) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 4
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 4
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7) => ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9) => 4
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 5
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 4
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,3),(1,2)],4) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 4
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 5
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => ([(0,3),(1,2)],4) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 4
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => ([(1,2),(2,3)],4) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 4
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 5
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => 5
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7) => ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7) => ([(0,1),(0,2),(0,3)],4) => ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9) => 4
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([],3) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => ([(1,2),(2,3)],4) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 4
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 5
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => ([(0,4),(3,2),(4,1),(4,3)],5) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => 5
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 5
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 4
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => 5
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 5
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => 5
([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8) => ([(0,3),(0,5),(2,7),(3,6),(4,2),(4,6),(5,4),(6,7),(7,1)],8) => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 5
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8) => ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7),(7,1)],8) => ([(0,3),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9) => 4
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1),(7,5)],8) => ([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(7,2),(7,3)],8) => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 5
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => ([(0,4),(1,4),(4,2),(4,3)],5) => ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => 5
([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8) => ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8) => ([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8) => 6
([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => 5
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => ([(1,2),(2,3)],4) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 4
([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => ([(0,4),(3,2),(4,1),(4,3)],5) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => 5
([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 4
([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => 5
([(0,5),(1,7),(2,6),(3,2),(4,1),(4,6),(5,3),(5,4),(6,7)],8) => ([(0,3),(0,5),(2,7),(3,6),(4,2),(5,4),(5,6),(6,7),(7,1)],8) => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 5
([(0,6),(2,7),(3,7),(4,3),(5,1),(6,2),(6,4),(7,5)],8) => ([(0,5),(1,7),(2,7),(4,2),(5,6),(6,1),(6,4),(7,3)],8) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9) => 6
([(0,3),(0,4),(1,5),(2,5),(2,6),(3,6),(4,1),(4,2),(5,7),(6,7)],8) => ([(0,3),(0,4),(1,6),(2,7),(3,1),(3,5),(4,2),(4,5),(5,7),(7,6)],8) => ([(0,3),(1,2)],4) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 4
([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8) => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8) => 6
([(0,4),(0,5),(1,7),(2,7),(4,2),(4,6),(5,1),(5,6),(6,7),(7,3)],8) => ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3)],4) => ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9) => 4
([(0,5),(1,7),(2,6),(3,4),(4,1),(4,6),(5,2),(5,3),(6,7)],8) => ([(0,4),(0,5),(1,6),(3,6),(4,7),(5,1),(5,7),(6,2),(7,3)],8) => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => 5
([(0,4),(0,5),(1,7),(3,6),(4,3),(5,1),(5,6),(6,7),(7,2)],8) => ([(0,5),(1,7),(2,6),(3,1),(4,3),(4,6),(5,2),(5,4),(6,7)],8) => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => 5
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(7,2),(7,3)],8) => ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1),(7,5)],8) => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 5
([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8) => ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8) => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8) => 6
([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8) => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8) => 6
([(0,4),(0,5),(1,6),(3,6),(4,7),(5,1),(5,7),(6,2),(7,3)],8) => ([(0,5),(1,7),(2,6),(3,4),(4,1),(4,6),(5,2),(5,3),(6,7)],8) => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => 5
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => ([],3) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 5
([(0,3),(0,5),(2,7),(3,6),(4,2),(4,6),(5,4),(6,7),(7,1)],8) => ([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8) => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => 5
([(0,5),(1,7),(2,7),(3,6),(4,1),(5,3),(6,2),(6,4)],8) => ([(0,3),(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(7,5)],8) => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 6
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => 7
([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8) => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8) => 6
([(0,5),(1,7),(2,7),(4,2),(5,6),(6,1),(6,4),(7,3)],8) => ([(0,6),(2,7),(3,7),(4,3),(5,1),(6,2),(6,4),(7,5)],8) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9) => 6
([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9) => ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9) => ([(0,3),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9) => 4
([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9) => ([(0,6),(1,8),(2,8),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(8,5)],9) => ([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => ([(0,6),(1,8),(2,8),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(8,5)],9) => 6
([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9) => ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9) => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9) => 6
([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9) => ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9) => ([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9) => 6
([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9) => ([(0,5),(1,8),(2,8),(3,7),(4,7),(5,6),(6,1),(6,2),(8,3),(8,4)],9) => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => ([(0,5),(1,8),(2,8),(3,7),(4,7),(5,6),(6,1),(6,2),(8,3),(8,4)],9) => 6
([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 5
([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 5
([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 5
([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9) => ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9) => 6
([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => 5
([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => ([(0,3),(1,2)],4) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 4
([(0,6),(1,8),(2,8),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(8,5)],9) => ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9) => ([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9) => 6
([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9) => ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9) => 6
([(0,5),(1,8),(2,8),(3,7),(4,7),(5,6),(6,1),(6,2),(8,3),(8,4)],9) => ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9) => ([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9) => 6
([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => 5
([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => 5
([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9) => ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9) => ([(0,1),(0,2),(0,3)],4) => ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9) => 4
([(0,5),(1,8),(2,7),(3,6),(4,1),(4,7),(5,3),(6,2),(6,4),(7,8)],9) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 6
([(0,6),(1,8),(2,8),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],9) => ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9) => ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7) => ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9) => 7
([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9) => ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9) => 7
([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9) => ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9) => 7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of join prime elements of a lattice.
An element x of a lattice L is join-prime (or coprime) if x≤a∨b implies x≤a or x≤b for every a,b∈L.
An element x of a lattice L is join-prime (or coprime) if x≤a∨b implies x≤a or x≤b for every a,b∈L.
Map
dual
Description
Return the dual lattice.
The dual (or opposite) of a lattice (P,≤) is the lattice (Pd,≤d) with x≤dy if y≤x.
The dual (or opposite) of a lattice (P,≤) is the lattice (Pd,≤d) with x≤dy if y≤x.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal I in a poset P is a downward closed set, i.e., a∈I and b≤a implies b∈I. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
An order ideal I in a poset P is a downward closed set, i.e., a∈I and b≤a implies b∈I. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
join irreducibles
Description
The poset of join irreducibles of a lattice.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!