Identifier
-
Mp00030:
Dyck paths
—zeta map⟶
Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001617: Lattices ⟶ ℤ
Values
[1,0] => [1,0] => ([],1) => ([(0,1)],2) => 1
[1,0,1,0] => [1,1,0,0] => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,0,0] => [1,0,1,0] => ([(0,1)],2) => ([(0,2),(2,1)],3) => 2
[1,0,1,0,1,0] => [1,1,1,0,0,0] => ([],3) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
[1,0,1,1,0,0] => [1,0,1,1,0,0] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 3
[1,1,0,0,1,0] => [1,1,0,1,0,0] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 3
[1,1,0,1,0,0] => [1,1,0,0,1,0] => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 3
[1,1,1,0,0,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 3
[1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9) => 4
[1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 4
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 4
[1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 4
[1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => ([(0,1),(0,2),(0,3)],4) => ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9) => 4
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 4
[1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,0,0] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 4
[1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 4
[1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 4
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => 5
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 5
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(1,4),(4,2),(4,3)],5) => ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => 5
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 5
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => 5
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => 5
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 5
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => 5
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 5
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 5
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 5
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => 5
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => ([(0,4),(3,2),(4,1),(4,3)],5) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => 5
[1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 5
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9) => 6
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9) => 6
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9) => 6
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8) => 6
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9) => 6
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => ([(0,6),(1,8),(2,8),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(8,5)],9) => 6
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8) => 6
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => ([(0,5),(1,8),(2,8),(3,7),(4,7),(5,6),(6,1),(6,2),(8,3),(8,4)],9) => 6
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8) => 6
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8) => 6
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 6
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9) => 6
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9) => 6
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8) => 6
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7) => ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9) => 7
[1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9) => 7
[1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9) => 7
[1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => 7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The dimension of the space of valuations of a lattice.
A valuation, or modular function, on a lattice $L$ is a function $v:L\mapsto\mathbb R$ satisfying
$$ v(a\vee b) + v(a\wedge b) = v(a) + v(b). $$
It was shown by Birkhoff [1, thm. X.2], that a lattice with a positive valuation must be modular. This was sharpened by Fleischer and Traynor [2, thm. 1], which states that the modular functions on an arbitrary lattice are in bijection with the modular functions on its modular quotient Mp00196The modular quotient of a lattice..
Moreover, Birkhoff [1, thm. X.2] showed that the dimension of the space of modular functions equals the number of subsets of projective prime intervals.
A valuation, or modular function, on a lattice $L$ is a function $v:L\mapsto\mathbb R$ satisfying
$$ v(a\vee b) + v(a\wedge b) = v(a) + v(b). $$
It was shown by Birkhoff [1, thm. X.2], that a lattice with a positive valuation must be modular. This was sharpened by Fleischer and Traynor [2, thm. 1], which states that the modular functions on an arbitrary lattice are in bijection with the modular functions on its modular quotient Mp00196The modular quotient of a lattice..
Moreover, Birkhoff [1, thm. X.2] showed that the dimension of the space of modular functions equals the number of subsets of projective prime intervals.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal $\mathcal I$ in a poset $P$ is a downward closed set, i.e., $a \in \mathcal I$ and $b \leq a$ implies $b \in \mathcal I$. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
An order ideal $\mathcal I$ in a poset $P$ is a downward closed set, i.e., $a \in \mathcal I$ and $b \leq a$ implies $b \in \mathcal I$. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
zeta map
Description
The zeta map on Dyck paths.
The zeta map $\zeta$ is a bijection on Dyck paths of semilength $n$.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path $D$ with corresponding area sequence $a=(a_1,\ldots,a_n)$ to a Dyck path as follows:
The zeta map $\zeta$ is a bijection on Dyck paths of semilength $n$.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path $D$ with corresponding area sequence $a=(a_1,\ldots,a_n)$ to a Dyck path as follows:
- First, build an intermediate Dyck path consisting of $d_1$ north steps, followed by $d_1$ east steps, followed by $d_2$ north steps and $d_2$ east steps, and so on, where $d_i$ is the number of $i-1$'s within the sequence $a$.
For example, given $a=(0,1,2,2,2,3,1,2)$, we build the path
$$NE\ NNEE\ NNNNEEEE\ NE.$$ - Next, the rectangles between two consecutive peaks are filled. Observe that such the rectangle between the $k$th and the $(k+1)$st peak must be filled by $d_k$ east steps and $d_{k+1}$ north steps. In the above example, the rectangle between the second and the third peak must be filled by $2$ east and $4$ north steps, the $2$ being the number of $1$'s in $a$, and $4$ being the number of $2$'s. To fill such a rectangle, scan through the sequence a from left to right, and add east or north steps whenever you see a $k-1$ or $k$, respectively. So to fill the $2\times 4$ rectangle, we look for $1$'s and $2$'s in the sequence and see $122212$, so this rectangle gets filled with $ENNNEN$.
The complete path we obtain in thus
$$NENNENNNENEEENEE.$$
Map
Hessenberg poset
Description
The Hessenberg poset of a Dyck path.
Let $D$ be a Dyck path of semilength $n$, regarded as a subdiagonal path from $(0,0)$ to $(n,n)$, and let $\boldsymbol{m}_i$ be the $x$-coordinate of the $i$-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to $D$ has elements $\{1,\dots,n\}$ with $i < j$ if $j < \boldsymbol{m}_i$.
Let $D$ be a Dyck path of semilength $n$, regarded as a subdiagonal path from $(0,0)$ to $(n,n)$, and let $\boldsymbol{m}_i$ be the $x$-coordinate of the $i$-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to $D$ has elements $\{1,\dots,n\}$ with $i < j$ if $j < \boldsymbol{m}_i$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!