Identifier
Values
0 => ([(0,1)],2) => ([(0,2),(2,1)],3) => 2
1 => ([(0,1)],2) => ([(0,2),(2,1)],3) => 2
00 => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 3
01 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 4
10 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 4
11 => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 3
000 => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9) => 6
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9) => 6
111 => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => 7
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => 7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The dimension of the space of valuations of a lattice.
A valuation, or modular function, on a lattice L is a function v:L↦R satisfying
v(a∨b)+v(a∧b)=v(a)+v(b).
It was shown by Birkhoff [1, thm. X.2], that a lattice with a positive valuation must be modular. This was sharpened by Fleischer and Traynor [2, thm. 1], which states that the modular functions on an arbitrary lattice are in bijection with the modular functions on its modular quotient Mp00196The modular quotient of a lattice..
Moreover, Birkhoff [1, thm. X.2] showed that the dimension of the space of modular functions equals the number of subsets of projective prime intervals.
A valuation, or modular function, on a lattice L is a function v:L↦R satisfying
v(a∨b)+v(a∧b)=v(a)+v(b).
It was shown by Birkhoff [1, thm. X.2], that a lattice with a positive valuation must be modular. This was sharpened by Fleischer and Traynor [2, thm. 1], which states that the modular functions on an arbitrary lattice are in bijection with the modular functions on its modular quotient Mp00196The modular quotient of a lattice..
Moreover, Birkhoff [1, thm. X.2] showed that the dimension of the space of modular functions equals the number of subsets of projective prime intervals.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal I in a poset P is a downward closed set, i.e., a∈I and b≤a implies b∈I. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
An order ideal I in a poset P is a downward closed set, i.e., a∈I and b≤a implies b∈I. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that u<v if and only if u is a factor of v.
This is the partial order on the set of distinct factors of a binary word, such that u<v if and only if u is a factor of v.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!