Processing math: 100%

Identifier
Values
([],1) => ([],1) => ([],1) => ([],1) => 0
([(0,1)],2) => ([(0,1)],2) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of atoms of a lattice.
An element of a lattice is an atom if it covers the least element.
Map
lattice of congruences
Description
The lattice of congruences of a lattice.
A congruence of a lattice is an equivalence relation such that a1a2 and b1b2 implies a1b1a2b2 and a1b1a2b2.
The set of congruences ordered by refinement forms a lattice.
Map
maximal antichains
Description
The lattice of maximal antichains in a poset.
An antichain A in a poset is maximal if there is no antichain of larger cardinality which contains all elements of A.
The set of maximal antichains can be ordered by setting ABAB, where A is the order ideal generated by A.
Map
to poset
Description
Return the poset corresponding to the lattice.