Identifier
Values
([],1) => ([],1) => ([(0,1)],2) => 0
([],2) => ([],1) => ([(0,1)],2) => 0
([(0,1)],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([],3) => ([],1) => ([(0,1)],2) => 0
([(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(0,2),(1,2)],3) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([],4) => ([],1) => ([(0,1)],2) => 0
([(2,3)],4) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(1,3),(2,3)],4) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(0,3),(1,3),(2,3)],4) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,2),(0,3),(1,2),(1,3)],4) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([],5) => ([],1) => ([(0,1)],2) => 0
([(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(1,4),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(0,4),(1,4),(2,4),(3,4)],5) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([],6) => ([],1) => ([(0,1)],2) => 0
([(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([],7) => ([],1) => ([(0,1)],2) => 0
([(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of doubly irreducible elements of a lattice.
An element $d$ of a lattice $L$ is doubly irreducible if it is both join and meet irreducible. That means, $d$ is neither the least nor the greatest element of $L$ and if $d=x\vee y$ or $d=x\wedge y$, then $d\in\{x,y\}$ for all $x,y\in L$.
In a finite lattice, the doubly irreducible elements are those which cover and are covered by a unique element.
Map
weak duplicate order
Description
The weak duplicate order of the de-duplicate of a graph.
Let $G=(V, E)$ be a graph and let $N=\{ N_v | v\in V\}$ be the set of (distinct) neighbourhoods of $G$.
This map yields the poset obtained by ordering $N$ by reverse inclusion.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal $\mathcal I$ in a poset $P$ is a downward closed set, i.e., $a \in \mathcal I$ and $b \leq a$ implies $b \in \mathcal I$. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.