Identifier
Values
[] => ([],1) => ([],1) => 1
[[]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[],[]] => ([(0,2),(1,2)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[[[]]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 2
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 2
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 2
[[[],[]]] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[[[[]]]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 1
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 2
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 2
[[],[[],[]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 2
[[],[[[]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 2
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 2
[[[]],[[]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 2
[[[],[]],[]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 2
[[[[]]],[]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 2
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(4,3)],5) => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => 2
[[[],[[]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 2
[[[[]],[]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 2
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 2
[[[[[]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => 2
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => 2
[[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7) => 2
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => 2
[[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => 2
[[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7) => 2
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 2
[[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7) => 2
[[],[[[]],[]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7) => 2
[[],[[[],[]]]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7) => 2
[[],[[[[]]]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 2
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => 2
[[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => 2
[[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => 2
[[[]],[[],[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7) => 2
[[[]],[[[]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 2
[[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7) => 2
[[[],[]],[[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7) => 2
[[[[]]],[[]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 2
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 2
[[[],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7) => 2
[[[[]],[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7) => 2
[[[[],[]]],[]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7) => 2
[[[[[]]]],[]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 2
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => 2
[[[],[],[[]]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => 2
[[[],[[]],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => 2
[[[],[[],[]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => 2
[[[],[[[]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 2
[[[[]],[],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => 2
[[[[]],[[]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => 2
[[[[],[]],[]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => 2
[[[[[]]],[]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 2
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7) => 2
[[[[],[[]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 2
[[[[[]],[]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 2
[[[[[],[]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 2
[[[[[[]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[[[[[[]]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The breadth of a lattice.
The breadth of a lattice is the least integer $b$ such that any join $x_1\vee x_2\vee\cdots\vee x_n$, with $n > b$, can be expressed as a join over a proper subset of $\{x_1,x_2,\ldots,x_n\}$.
Map
to poset
Description
Return the poset obtained by interpreting the tree as the Hasse diagram of a graph.
Map
Dedekind-MacNeille completion
Description
Return the smallest lattice containing the poset.