Identifier
Values
[.,.] => [.,.] => ([],1) => ([(0,1)],2) => 2
[.,[.,.]] => [.,[.,.]] => ([(0,1)],2) => ([(0,2),(2,1)],3) => 3
[[.,.],.] => [[.,.],.] => ([(0,1)],2) => ([(0,2),(2,1)],3) => 3
[.,[.,[.,.]]] => [.,[.,[.,.]]] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 4
[.,[[.,.],.]] => [.,[[.,.],.]] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 4
[[.,.],[.,.]] => [[.,[.,.]],.] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 4
[[.,[.,.]],.] => [[.,.],[.,.]] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 3
[[[.,.],.],.] => [[[.,.],.],.] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 4
[.,[.,[.,[.,.]]]] => [.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[.,[.,[[.,.],.]]] => [.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[.,[[.,.],[.,.]]] => [.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[.,[[.,[.,.]],.]] => [.,[[.,.],[.,.]]] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 4
[.,[[[.,.],.],.]] => [.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[.,.],[.,[.,.]]] => [[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[.,.],[[.,.],.]] => [[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[.,[.,.]],[.,.]] => [[.,[.,.]],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 4
[[[.,.],.],[.,.]] => [[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[.,[.,[.,.]]],.] => [[.,.],[.,[.,.]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 4
[[.,[[.,.],.]],.] => [[.,.],[[.,.],.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 4
[[[.,.],[.,.]],.] => [[[.,.],[.,.]],.] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 4
[[[.,[.,.]],.],.] => [[[.,.],.],[.,.]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 4
[[[[.,.],.],.],.] => [[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[.,[.,[.,[.,[.,.]]]]] => [.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[.,[.,[.,[[.,.],.]]]] => [.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[.,[.,[[.,.],[.,.]]]] => [.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[.,[.,[[.,[.,.]],.]]] => [.,[.,[[.,.],[.,.]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 5
[.,[.,[[[.,.],.],.]]] => [.,[.,[[[.,.],.],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[.,[[.,.],[.,[.,.]]]] => [.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[.,[[.,.],[[.,.],.]]] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[.,[[[.,.],.],[.,.]]] => [.,[[[.,[.,.]],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[.,[[[.,.],[.,.]],.]] => [.,[[[.,.],[.,.]],.]] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 5
[.,[[[[.,.],.],.],.]] => [.,[[[[.,.],.],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[.,.],[.,[.,[.,.]]]] => [[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[.,.],[.,[[.,.],.]]] => [[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[.,.],[[.,.],[.,.]]] => [[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[.,.],[[.,[.,.]],.]] => [[.,[[.,.],[.,.]]],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 5
[[.,.],[[[.,.],.],.]] => [[.,[[[.,.],.],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[.,.],.],[.,[.,.]]] => [[[.,[.,[.,.]]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[.,.],.],[[.,.],.]] => [[[.,[[.,.],.]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[.,.],.],.],[.,.]] => [[[[.,[.,.]],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[.,.],.],[.,.]],.] => [[[[.,.],[.,.]],.],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 5
[[[[[.,.],.],.],.],.] => [[[[[.,.],.],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[.,[.,[.,[.,[.,[.,.]]]]]] => [.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[.,[.,[.,[[.,.],.]]]]] => [.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[.,[.,[[.,.],[.,.]]]]] => [.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[.,[.,[[[.,.],.],.]]]] => [.,[.,[.,[[[.,.],.],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[.,[[.,.],[.,[.,.]]]]] => [.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[.,[[.,.],[[.,.],.]]]] => [.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[.,[[[.,.],.],[.,.]]]] => [.,[.,[[[.,[.,.]],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[.,[[[[.,.],.],.],.]]] => [.,[.,[[[[.,.],.],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[[.,.],[.,[.,[.,.]]]]] => [.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[[.,.],[.,[[.,.],.]]]] => [.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[[.,.],[[.,.],[.,.]]]] => [.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[[.,.],[[[.,.],.],.]]] => [.,[[.,[[[.,.],.],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[[[.,.],.],[.,[.,.]]]] => [.,[[[.,[.,[.,.]]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[[[.,.],.],[[.,.],.]]] => [.,[[[.,[[.,.],.]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[[[[.,.],.],.],[.,.]]] => [.,[[[[.,[.,.]],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[.,[[[[[.,.],.],.],.],.]] => [.,[[[[[.,.],.],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,.],[.,[.,[.,[.,.]]]]] => [[.,[.,[.,[.,[.,.]]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,.],[.,[.,[[.,.],.]]]] => [[.,[.,[.,[[.,.],.]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,.],[.,[[.,.],[.,.]]]] => [[.,[.,[[.,[.,.]],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,.],[.,[[[.,.],.],.]]] => [[.,[.,[[[.,.],.],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,.],[[.,.],[.,[.,.]]]] => [[.,[[.,[.,[.,.]]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,.],[[.,.],[[.,.],.]]] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,.],[[[.,.],.],[.,.]]] => [[.,[[[.,[.,.]],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[.,.],[[[[.,.],.],.],.]] => [[.,[[[[.,.],.],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,.],.],[.,[.,[.,.]]]] => [[[.,[.,[.,[.,.]]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,.],.],[.,[[.,.],.]]] => [[[.,[.,[[.,.],.]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,.],.],[[.,.],[.,.]]] => [[[.,[[.,[.,.]],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[.,.],.],[[[.,.],.],.]] => [[[.,[[[.,.],.],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,.],.],.],[.,[.,.]]] => [[[[.,[.,[.,.]]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[.,.],.],.],[[.,.],.]] => [[[[.,[[.,.],.]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[.,.],.],.],.],[.,.]] => [[[[[.,[.,.]],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[.,.],.],.],.],.],.] => [[[[[[.,.],.],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of maximal proper sublattices of a lattice.
Map
left border symmetry
Description
Return the tree where a symmetry has been applied recursively on all left borders. If a tree is made of three trees $T_1, T_2, T_3$ on its left border, it becomes $T_3, T_2, T_1$ where same symmetry has been applied to $T_1, T_2, T_3$.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal $\mathcal I$ in a poset $P$ is a downward closed set, i.e., $a \in \mathcal I$ and $b \leq a$ implies $b \in \mathcal I$. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.