edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[1]=>1 [2]=>1 [1,1]=>1 [3]=>2 [2,1]=>3 [1,1,1]=>4 [4]=>6 [3,1]=>11 [2,2]=>16 [2,1,1]=>23 [1,1,1,1]=>38 [5]=>21 [4,1]=>58 [3,2]=>98 [3,1,1]=>162 [2,2,1]=>230 [2,1,1,1]=>402 [1,1,1,1,1]=>728 [6]=>112 [5,1]=>407 [4,2]=>879 [4,1,1]=>1549 [3,3]=>1087 [3,2,1]=>2812 [3,1,1,1]=>5204 [2,2,2]=>4065 [2,2,1,1]=>7490 [2,1,1,1,1]=>14080 [1,1,1,1,1,1]=>26704
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of coloured connected graphs such that the multiplicities of colours are given by a partition.
In particular, the value on the partition $(n)$ is the number of unlabelled connected graphs on $n$ vertices, oeis:A001349, whereas the value on the partition $(1^n)$ is the number of labelled connected graphs oeis:A001187.
Code
def statistic(mu):
    h = SymmetricFunctions(QQ).h()
    F = (species.SimpleGraphSpecies().cycle_index_series()-1).logarithm()
    return F.coefficient(mu.size()).scalar(h(mu))

Created
Oct 01, 2020 at 22:08 by Martin Rubey
Updated
Oct 01, 2020 at 22:08 by Martin Rubey