Identifier
-
Mp00037:
Graphs
—to partition of connected components⟶
Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001627: Integer partitions ⟶ ℤ
Values
([],3) => [1,1,1] => [1,1] => [1] => 1
([],4) => [1,1,1,1] => [1,1,1] => [1,1] => 1
([(2,3)],4) => [2,1,1] => [1,1] => [1] => 1
([],5) => [1,1,1,1,1] => [1,1,1,1] => [1,1,1] => 4
([(3,4)],5) => [2,1,1,1] => [1,1,1] => [1,1] => 1
([(2,4),(3,4)],5) => [3,1,1] => [1,1] => [1] => 1
([(1,4),(2,3)],5) => [2,2,1] => [2,1] => [1] => 1
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => [1] => 1
([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => [1,1,1,1] => 38
([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => [1,1,1] => 4
([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [1,1] => 1
([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => [1,1] => 1
([(2,5),(3,4),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [1] => 1
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [1,1] => 1
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => [2] => 1
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [1] => 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,1,1,1,1] => 728
([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => [1,1,1,1] => 38
([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [1,1,1] => 4
([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => [1,1,1] => 4
([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [1,1] => 1
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [1,1,1] => 4
([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [1] => 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => [2,1] => 3
([(2,6),(3,5),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [2] => 1
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [1,1] => 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [1] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [2] => 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [3,1] => [1] => 1
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 4
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(3,7),(4,7),(5,7),(6,7)],8) => [5,1,1,1] => [1,1,1] => [1,1] => 1
([],8) => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 26704
([(4,7),(5,6)],8) => [2,2,1,1,1,1] => [2,1,1,1,1] => [1,1,1,1] => 38
([(4,7),(5,6),(6,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 4
([(4,6),(4,7),(5,6),(5,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 4
([(2,7),(3,7),(4,6),(5,6)],8) => [3,3,1,1] => [3,1,1] => [1,1] => 1
([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8) => [5,1,1,1] => [1,1,1] => [1,1] => 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,4),(3,5),(4,5),(6,7)],8) => [3,3,1,1] => [3,1,1] => [1,1] => 1
([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,1,1] => [2,1,1] => [1,1] => 1
([(2,6),(2,7),(3,4),(3,5),(4,5),(4,7),(5,6),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,3,1] => [3,1] => [1] => 1
([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(1,2),(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,3,1] => [3,1] => [1] => 1
([(0,7),(1,6),(2,5),(3,4)],8) => [2,2,2,2] => [2,2,2] => [2,2] => 16
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8) => [4,2,2] => [2,2] => [2] => 1
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,2] => [2,2] => [2] => 1
([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9) => [7,1,1] => [1,1] => [1] => 1
>>> Load all 132 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of coloured connected graphs such that the multiplicities of colours are given by a partition.
In particular, the value on the partition $(n)$ is the number of unlabelled connected graphs on $n$ vertices, oeis:A001349, whereas the value on the partition $(1^n)$ is the number of labelled connected graphs oeis:A001187.
In particular, the value on the partition $(n)$ is the number of unlabelled connected graphs on $n$ vertices, oeis:A001349, whereas the value on the partition $(1^n)$ is the number of labelled connected graphs oeis:A001187.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
first row removal
Description
Removes the first entry of an integer partition
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!