Identifier
-
Mp00023:
Dyck paths
—to non-crossing permutation⟶
Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
Mp00196: Lattices —The modular quotient of a lattice.⟶ Lattices
St001630: Lattices ⟶ ℤ
Values
[1,0,1,0] => [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,0,0] => [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,0] => [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,0,0,0] => [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,0,1,0] => [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,0,1,0] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,0,1,0,0,0] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,0,0,0,0] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,1,0,0,1,0] => [1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,0,1,0,1,0] => [1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,1,0,0,1,0] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,0,0,0,1,0] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,0,1,0,1,0,0,0] => [5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,0,1,1,0,0,0,0] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,0,0,1,0,0,0] => [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,0,1,0,0,0,0] => [5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,1,0,0,0,0,0] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,4,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,5,4,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,3,4,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,3,4,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,3,5,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,4,3,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,5,3,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,5,4,3,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,0,1,0,1,0,1,0,0,0] => [6,2,3,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,15),(6,13),(6,15),(8,14),(9,14),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,9)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,0,1,0,1,1,0,0,0,0] => [6,2,3,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,0,1,1,0,0,1,0,0,0] => [6,2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,0,1,1,0,1,0,0,0,0] => [6,2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,0,1,1,1,0,0,0,0,0] => [6,2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,0,0,1,0,1,0,0,0] => [6,3,2,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,0,0,1,1,0,0,0,0] => [6,3,2,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,0,1,0,0,1,0,0,0] => [6,3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,0,1,0,1,0,0,0,0] => [6,3,4,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,0,1,1,0,0,0,0,0] => [6,3,5,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,1,0,0,0,1,0,0,0] => [6,4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,1,0,0,1,0,0,0,0] => [6,4,3,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,1,0,1,0,0,0,0,0] => [6,5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0] => [1,3,4,2,6,7,5,8] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,14),(3,15),(4,15),(5,13),(6,12),(7,17),(8,18),(10,9),(11,9),(12,10),(13,11),(14,17),(15,18),(16,10),(16,11),(17,12),(17,16),(18,13),(18,16)],19) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0] => [8,3,2,5,4,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,17),(2,17),(3,14),(4,14),(5,15),(6,15),(7,13),(8,12),(10,16),(11,16),(12,9),(13,9),(14,11),(15,10),(16,12),(16,13),(17,10),(17,11)],18) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0] => [8,3,2,7,6,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,13),(3,16),(4,15),(5,17),(6,17),(7,15),(7,19),(8,16),(8,19),(10,12),(11,12),(12,18),(13,9),(14,9),(15,10),(16,11),(17,18),(18,13),(18,14),(19,10),(19,11)],20) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0] => [8,5,4,3,2,7,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,14),(2,13),(3,16),(4,15),(5,17),(6,17),(7,15),(7,19),(8,16),(8,19),(10,12),(11,12),(12,18),(13,9),(14,9),(15,10),(16,11),(17,18),(18,13),(18,14),(19,10),(19,11)],20) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Map
lattice of intervals
Description
The lattice of intervals of a permutation.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
An interval of a permutation $\pi$ is a possibly empty interval of values that appear in consecutive positions of $\pi$. The lattice of intervals of $\pi$ has as elements the intervals of $\pi$, ordered by set inclusion.
Map
The modular quotient of a lattice.
Description
The modular quotient of a lattice.
This is the largest quotient of a lattice which is modular.
This is the largest quotient of a lattice which is modular.
Map
to non-crossing permutation
Description
Sends a Dyck path $D$ with valley at positions $\{(i_1,j_1),\ldots,(i_k,j_k)\}$ to the unique non-crossing permutation $\pi$ having descents $\{i_1,\ldots,i_k\}$ and whose inverse has descents $\{j_1,\ldots,j_k\}$.
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!